Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Construction  





2 Main properties  





3 Generalizations  





4 References  





5 Further reading  














Schur algebra







Add links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


In mathematics, Schur algebras, named after Issai Schur, are certain finite-dimensional algebras closely associated with Schur–Weyl duality between general linear and symmetric groups. They are used to relate the representation theories of those two groups. Their use was promoted by the influential monograph of J. A. Green first published in 1980.[1] The name "Schur algebra" is due to Green. In the modular case (over infinite fields of positive characteristic) Schur algebras were used by Gordon James and Karin Erdmann to show that the (still open) problems of computing decomposition numbers for general linear groups and symmetric groups are actually equivalent.[2] Schur algebras were used by Friedlander and Suslin to prove finite generation of cohomology of finite group schemes.[3]

Construction[edit]

The Schur algebra can be defined for any commutative ring and integers . Consider the algebra ofpolynomials (with coefficients in ) in commuting variables , 1 ≤ i, j. Denote by the homogeneous polynomials of degree . Elements of are k-linear combinations of monomials formed by multiplying together of the generators (allowing repetition). Thus

Now, has a natural coalgebra structure with comultiplication and counit the algebra homomorphisms given on generators by

   (Kronecker's delta).

Since comultiplication is an algebra homomorphism, is a bialgebra. One easily checks that is a subcoalgebra of the bialgebra , for every r ≥ 0.

Definition. The Schur algebra (in degree ) is the algebra . That is, is the linear dual of .

It is a general fact that the linear dual of a coalgebra is an algebra in a natural way, where the multiplication in the algebra is induced by dualizing the comultiplication in the coalgebra. To see this, let

and, given linear functionals , on, define their product to be the linear functional given by

The identity element for this multiplication of functionals is the counit in .

Main properties[edit]

Then the symmetric group on letters acts naturally on the tensor space by place permutation, and one has an isomorphism

In other words, may be viewed as the algebra of endomorphisms of tensor space commuting with the action of the symmetric group.

for any commutative ring .

Generalizations[edit]

The study of these various classes of generalizations forms an active area of contemporary research.

References[edit]

  1. ^ J. A. Green, Polynomial Representations of GLn, Springer Lecture Notes 830, Springer-Verlag 1980. MR2349209, ISBN 978-3-540-46944-5, ISBN 3-540-46944-3
  • ^ Karin Erdmann, Decomposition numbers for symmetric groups and composition factors of Weyl modules. Journal of Algebra 180 (1996), 316–320. doi:10.1006/jabr.1996.0067 MR1375581
  • ^ Eric Friedlander and Andrei Suslin, Cohomology of finite group schemes over a field. Inventiones Mathematicae 127 (1997), 209--270. MR1427618 doi:10.1007/s002220050119
  • ^ Edward Cline, Brian Parshall, and Leonard Scott, Finite-dimensional algebras and highest weight categories. Journal für die Reine und Angewandte Mathematik [Crelle's Journal] 391 (1988), 85–99. MR0961165
  • ^ Stephen Donkin, On Schur algebras and related algebras, I. Journal of Algebra 104 (1986), 310–328. doi:10.1016/0021-8693(86)90218-8 MR0866778
  • ^ Richard Dipper and Gordon James, The q-Schur algebra. Proceedings of the London Math. Society (3) 59 (1989), 23–50. doi:10.1112/plms/s3-59.1.23 MR0997250
  • ^ Stephen Doty, Presenting generalized q-Schur algebras. Representation Theory 7 (2003), 196--213 (electronic). doi:10.1090/S1088-4165-03-00176-6
  • ^ R. M. Green, The affine q-Schur algebra. Journal of Algebra 215 (1999), 379--411. doi:10.1006/jabr.1998.7753
  • ^ Richard Dipper, Gordon James, and Andrew Mathas, Cyclotomic q-Schur algebras. Math. Zeitschrift 229 (1998), 385--416. doi:10.1007/PL00004665 MR1658581
  • Further reading[edit]


    Retrieved from "https://en.wikipedia.org/w/index.php?title=Schur_algebra&oldid=1225278653"

    Categories: 
    Abstract algebra
    Representation theory
    Issai Schur
     



    This page was last edited on 23 May 2024, at 13:08 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki