Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Use in Apollo Program  





2 VHF jamming  





3 References  














Scimitar antenna







Add links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 




In other projects  



Wikimedia Commons
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Ascimitar antenna is a radio antenna so named because its shape resembles a talon-shaped curved sword of the same name. It was invented in 1958 by Edwin M. and William P. Turner. It is essentially a flat metal plate in a semi-circular or semi-elliptical shape with a wide end at one side and a narrow point at the other. Its shape makes it suited for use on aircraft or space vehicles. It was used for VHF communication on the Apollo command and service module.

A U.S. patent was applied for on October 31, 1958, and granted on December 26, 1961.[1] The inventors assigned the patent to the U.S. government, as represented by the Secretary of the Air Force.

Use in Apollo Program[edit]

Apollo Command/Service Module scimitar antenna
Apollo Command/Service Module scimitar antenna

The Block II Apollo command and service module carried a pair of elliptical VHF scimitar antennas on the Service Module walls. The antenna's scimitar shape wasn't externally visible, since it had to be covered by a shroud for aerodynamic purposes. The antenna radiated and received signals in an approximately hemispherical pattern, therefore two antennas were necessary to provide full omnidirectional coverage.[2] VHF communication was used for ship-to-ground communication in Earth orbit, and ship-to-ship communication with the Apollo Lunar Module. This was distinct from the unified S-band high-gain antenna used for communication with Earth at lunar distances.

The earlier Block I design of the Apollo spacecraft carried the scimitar antennas inside two semicircular strakes attached near the base of the Command Module, which were intended to improve aerodynamic stability during reentry. However, the strakes were found to be unnecessary, and would have been ineffective at high lunar return reentry speeds. Therefore, the strakes were deleted and the antennas were moved to the Service Module in the Block II design used in crewed missions.

Apollo 9 EVA showing scimitar antenna
Apollo 9 LM with forward scimitar antenna visible in the left foreground.

The first two Lunar Modules to fly, Apollo 5 and Apollo 9, also carried a pair of VHF scimitar antennas for the transmission of Developmental Flight Instrumentation (DFI) telemetry data.[3] One was located on the front face, just inboard of the right-hand side cockpit window, and the other was located on the left side of the aft equipment bay. Since the Lunar Module never operated in the Earth's atmosphere, no aerodynamic covering was necessary, and the scimitar shape was externally visible. After Apollo 9, the Lunar Module was considered operational, so the DFI and scimitar antennas were not present on subsequent flights.

VHF jamming[edit]

Antenna for the AN/ALA-15(V) jammer of a B-52

Military aircraft, typically long-range bombers in the 1960s, sometimes used VHF jamming to disrupt the voice communications of interceptor aircraft. This jamming required broadband, omnidirectional antennas, such as the scimitar.

Difficulties in developing the WCLG-3B design of antenna for the AN/ALA-15(V) voice jammer, by Dynalectron Corporation, led to both patented techniques in precision-forming PTFE as dielectric components,[4] and also a notable lawsuit over the termination of the US Government contract to supply them.[5]

References[edit]

  1. ^ US 3015101, Turner, Edwin M & Turner, William P, "Scimitar antenna", published 1961-12-26, assigned to United States Secretary of the Air Force 
  • ^ "Apollo Operations Handbook: Block II Spacecraft: Volume 1 Spacecraft Description, page 2.8-53" (PDF).
  • ^ "Apollo 9 Press Kit, page 45" (PDF).
  • ^ US 3656233, Overholser, John S., "Making polytetrafluoroethylene articles including tubes, and fittings employing such tubes, having improved concentricity and dimensional stability", published 1972-04-18, assigned to Dynalectron Corp. 
  • ^ Cowen, Chief Judge; Durfee, Senior Judge; Nichols, Judge (11 July 1975). On plaintiff's motion and defendant's cross motion for summary judgment (appeal ruling). Dynalectron Corporation (Pacific Division) vs. The United States (Armed Services Board of Contract Appeals). United States Court of Claims. 518 F.2d 594 (Fed. Cir. 1975).

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=Scimitar_antenna&oldid=1111088211"

    Categories: 
    Antennas (radio)
    Apollo program hardware
    American inventions
    Hidden categories: 
    Articles with short description
    Short description is different from Wikidata
    Commons category link is on Wikidata
     



    This page was last edited on 19 September 2022, at 07:07 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki