Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Ground shaking  





2 History  





3 See also  





4 Notes  





5 Sources  





6 Further reading  





7 External links  














Seismic intensity scales






Deutsch
فارسی

Bahasa Indonesia
עברית

Oʻzbekcha / ўзбекча
Plattdüütsch
Română
Rumantsch
Türkçe

 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Seismic intensity scales categorize the intensity or severity of ground shaking (quaking) at a given location, such as resulting from an earthquake. They are distinguished from seismic magnitude scales, which measure the magnitude or overall strength of an earthquake, which may, or perhaps may not, cause perceptible shaking.

Intensity scales are based on the observed effects of the shaking, such as the degree to which people or animals were alarmed, and the extent and severity of damage to different kinds of structures or natural features. The maximal intensity observed, and the extent of the area where shaking was felt (see isoseismal map, below), can be used to estimate the location and magnitude of the source earthquake; this is especially useful for historical earthquakes where there is no instrumental record.

Ground shaking[edit]

Ground shaking can be caused in various ways (volcanic tremors, avalanches, large explosions, etc.), but shaking intense enough to cause damage is usually due to rupturing of the Earth's crust known as earthquakes. The intensity of shaking depends on several factors:

Site response is especially important as certain conditions, such as unconsolidated sediments in a basin, can amplify ground motions as much as ten times.

Isoseismal map for the 1968 Illinois earthquake, showing the extent of different levels of shaking. The irregularity of areas is due to ground conditions and the underlying geology.

Where an earthquake is not recorded on seismographs an isoseismal map showing the intensities felt at different areas can be used to estimate the location and magnitude of the quake.[1] Such maps are also useful for estimating the shaking intensity, and thereby the likely level of damage, to be expected from a future earthquake of similar magnitude. In Japan this kind of information is used when an earthquake occurs to anticipate the severity of damage to be expected in different areas.[2]

The intensity of local ground-shaking depends on several factors besides the magnitude of the earthquake,[3] one of the most important being soil conditions. For instance, thick layers of soft soil (such as fill) can amplify seismic waves, often at a considerable distance from the source, while sedimentary basins will often resonate, increasing the duration of shaking. This is why, in the 1989 Loma Prieta earthquake, the Marina district of San Francisco was one of the most damaged areas, though it was nearly 100 kilometres (60 mi) from the epicenter.[4] Geological structures were also significant, such as where seismic waves passing under the south end of San Francisco Bay reflected off the base of the Earth's crust towards San Francisco and Oakland. A similar effect channeled seismic waves between the other major faults in the area.[5]

History[edit]

The first simple classification of earthquake intensity was devised by Domenico Pignataro in the 1780s.[6] The first recognisable intensity scale in the modern sense of the word was drawn up by P.N.G. Egen in 1828. However, the first modern mapping of earthquake intensity was made by Robert Mallet, an Irish engineer who was sent by Imperial College, London, to research the December 1857 Basilicata earthquake, also known as The Great Neapolitan Earthquake of 1857.[7] The first widely adopted intensity scale, the Rossi–Forel scale, was introduced in the late 19th century as a 10 grade scale.[8] In 1902, Italian seismologist Giuseppe Mercalli, created the Mercalli Scale, a new 12-grade scale. A very significant improvement was achieved, mainly by Charles Francis Richter during the 1950s, when (1) a correlation was found between seismic intensity and the Peak ground acceleration - PGA (see the equation that Richter found for California).[9] (2) a definition of the strength of the buildings, and a subdivision into groups (called type of buildings) was made. Then, the evaluation of the seismic intensity was based upon the damage grade to a given type of structure. That gave the Mercalli Scale, as well as the followed European MSK-64 scale, the quantitative element, which represents the vulnerability of the building's type.[10] Since then, that scale was called the Modified Mercalli intensity scale - MMS and the evaluations of the Seismic Intensities became more reliable.[11]

In addition, more intensity scales have been developed and are used in different parts of the world:

Country/Region Seismic intensity scale used
 China Liedu scale (GB/T 17742–1999)
 Europe European Macroseismic Scale (EMS-98)[12]
 Hong Kong Modified Mercalli scale (MM)[13]
 India Medvedev–Sponheuer–Karnik scale
 Indonesia Modified Mercalli scale (MM)[14]
 Israel Medvedev–Sponheuer–Karnik scale (MSK-64)
 Japan JMA Seismic Intensity Scale
 Kazakhstan Medvedev–Sponheuer–Karnik scale (MSK-64)
 Philippines PHIVOLCS Earthquake Intensity Scale (PEIS)
 Russia Medvedev–Sponheuer–Karnik scale (MSK-64)
 Taiwan Central Weather Administration seismic intensity scale[15]
 United States Modified Mercalli scale (MM)[16]

See also[edit]

Notes[edit]

  • ^ Doi 2010.
  • ^ Bolt 1993, p. 164 et seq..
  • ^ Bolt 1993, pp. 170–171.
  • ^ Bolt 1993, p. 170.
  • ^ Alexander 1993, p. 28.
  • ^ Mallet 1862.
  • ^ Bolt 1988, p. 147.
  • ^ where is the PGA for that given site with value of (cm/sec2) and is the Intensity value for that site. see: Richter 1958, p. 140.
  • ^ Lapajne 1984.
  • ^ Bolt 1988, p. 146–152.
  • ^ "The European Macroseismic Scale EMS-98". Centre Européen de Géodynamique et de Séismologie (ECGS). Retrieved 2013-07-26.
  • ^ "Magnitude and Intensity of an Earthquake". Hong Kong Observatory. Retrieved 2008-09-15.
  • ^ "Skala MMI (Modified Mercalli Intensity)" (in Indonesian). Meteorology, Climatology, and Geophysical Agency. Retrieved 2022-09-28.
  • ^ "Earthquake Preparedness and Response". Central Weather Bureau. Retrieved 2018-04-06.
  • ^ "The Severity of an Earthquake". U.S. Geological Survey. Retrieved 2012-01-15.
  • Sources[edit]

    Further reading[edit]

    External links[edit]


    Retrieved from "https://en.wikipedia.org/w/index.php?title=Seismic_intensity_scales&oldid=1217530436"

    Categories: 
    Seismic intensity scales
    Seismology measurement
    Seismology
    Earthquake engineering
    Hidden categories: 
    CS1 Indonesian-language sources (id)
    Articles with short description
    Short description is different from Wikidata
     



    This page was last edited on 6 April 2024, at 10:45 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki