Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Definition  





2 Properties  





3 Examples  





4 Applications  





5 See also  





6 References  





7 Further reading  





8 External links  














Sigmoid function






Afrikaans
العربية
Azərbaycanca
Català
Čeština
Deutsch
Eesti
Ελληνικά
Español
Euskara
فارسی
Français

Italiano
עברית
Magyar
Nederlands

Norsk bokmål
Polski
Português
Русский
Shqip
Ślůnski
Српски / srpski
Svenska
Türkçe
Українська
Tiếng Vit


 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 




In other projects  



Wikimedia Commons
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


The logistic curve
Plot of the error function

Asigmoid function is any mathematical function whose graph has a characteristic S-shaped or sigmoid curve.

A common example of a sigmoid function is the logistic function shown in the first figure and defined by the formula:[1]

Other standard sigmoid functions are given in the Examples section. In some fields, most notably in the context of artificial neural networks, the term "sigmoid function" is used as an alias for the logistic function.

Special cases of the sigmoid function include the Gompertz curve (used in modeling systems that saturate at large values of x) and the ogee curve (used in the spillway of some dams). Sigmoid functions have domain of all real numbers, with return (response) value commonly monotonically increasing but could be decreasing. Sigmoid functions most often show a return value (y axis) in the range 0 to 1. Another commonly used range is from −1 to 1.

A wide variety of sigmoid functions including the logistic and hyperbolic tangent functions have been used as the activation functionofartificial neurons. Sigmoid curves are also common in statistics as cumulative distribution functions (which go from 0 to 1), such as the integrals of the logistic density, the normal density, and Student's t probability density functions. The logistic sigmoid function is invertible, and its inverse is the logit function.

Definition[edit]

A sigmoid function is a bounded, differentiable, real function that is defined for all real input values and has a non-negative derivative at each point[1] [2] and exactly one inflection point.

Properties[edit]

In general, a sigmoid function is monotonic, and has a first derivative which is bell shaped. Conversely, the integral of any continuous, non-negative, bell-shaped function (with one local maximum and no local minimum, unless degenerate) will be sigmoidal. Thus the cumulative distribution functions for many common probability distributions are sigmoidal. One such example is the error function, which is related to the cumulative distribution function of a normal distribution; another is the arctan function, which is related to the cumulative distribution function of a Cauchy distribution.

A sigmoid function is constrained by a pair of horizontal asymptotesas.

A sigmoid function is convex for values less than a particular point, and it is concave for values greater than that point: in many of the examples here, that point is 0.

Examples[edit]

Some sigmoid functions compared. In the drawing all functions are normalized in such a way that their slope at the origin is 1.

using the hyperbolic tangent mentioned above. Here, is a free parameter encoding the slope at , which must be greater than or equal to because any smaller value will result in a function with multiple inflection points, which is therefore not a true sigmoid. This function is unusual because it actually attains the limiting values of -1 and 1 within a finite range, meaning that its value is constant at -1 for all and at 1 for all . Nonetheless, it is smooth (infinitely differentiable, ) everywhere, including at .

Applications[edit]

Inverted logistic S-curve to model the relation between wheat yield and soil salinity

Many natural processes, such as those of complex system learning curves, exhibit a progression from small beginnings that accelerates and approaches a climax over time. When a specific mathematical model is lacking, a sigmoid function is often used.[6]

The van Genuchten–Gupta model is based on an inverted S-curve and applied to the response of crop yield to soil salinity.

Examples of the application of the logistic S-curve to the response of crop yield (wheat) to both the soil salinity and depth to water table in the soil are shown in modeling crop response in agriculture.

Inartificial neural networks, sometimes non-smooth functions are used instead for efficiency; these are known as hard sigmoids.

Inaudio signal processing, sigmoid functions are used as waveshaper transfer functions to emulate the sound of analog circuitry clipping.[7]

Inbiochemistry and pharmacology, the Hill and Hill–Langmuir equations are sigmoid functions.

In computer graphics and real-time rendering, some of the sigmoid functions are used to blend colors or geometry between two values, smoothly and without visible seams or discontinuities.

Titration curves between strong acids and strong bases have a sigmoid shape due to the logarithmic nature of the pH scale.

The logistic function can be calculated efficiently by utilizing type III Unums.[8]

See also[edit]

  • Step function – Linear combination of indicator functions of real intervals
  • Sign function – Mathematical function returning -1, 0 or 1
  • Heaviside step function – Indicator function of positive numbers
  • Logistic regression – Statistical model for a binary dependent variable
  • Logit – Function in statistics
  • Softplus function – Activation function
  • Soboleva modified hyperbolic tangent – Mathematical activation function in data analysis
  • Softmax function – Smooth approximation of one-hot arg max
  • Swish function – Mathematical activation function in data analysis
  • Weibull distribution – Continuous probability distribution
  • Fermi–Dirac statistics – Statistical description for the behavior of fermions
  • References[edit]

    1. ^ a b Han, Jun; Morag, Claudio (1995). "The influence of the sigmoid function parameters on the speed of backpropagation learning". In Mira, José; Sandoval, Francisco (eds.). From Natural to Artificial Neural Computation. Lecture Notes in Computer Science. Vol. 930. pp. 195–201. doi:10.1007/3-540-59497-3_175. ISBN 978-3-540-59497-0.
  • ^ Ling, Yibei; He, Bin (December 1993). "Entropic analysis of biological growth models". IEEE Transactions on Biomedical Engineering. 40 (12): 1193–2000. doi:10.1109/10.250574. PMID 8125495.
  • ^ Dunning, Andrew J.; Kensler, Jennifer; Coudeville, Laurent; Bailleux, Fabrice (2015-12-28). "Some extensions in continuous methods for immunological correlates of protection". BMC Medical Research Methodology. 15 (107): 107. doi:10.1186/s12874-015-0096-9. PMC 4692073. PMID 26707389.
  • ^ "grex --- Growth-curve Explorer". GitHub. 2022-07-09. Archived from the original on 2022-08-25. Retrieved 2022-08-25.
  • ^ EpsilonDelta (2022-08-16). "Smooth Transition Function in One Dimension | Smooth Transition Function Series Part 1". 13:29/14:04 – via www.youtube.com.
  • ^ Gibbs, Mark N.; Mackay, D. (November 2000). "Variational Gaussian process classifiers". IEEE Transactions on Neural Networks. 11 (6): 1458–1464. doi:10.1109/72.883477. PMID 18249869. S2CID 14456885.
  • ^ Smith, Julius O. (2010). Physical Audio Signal Processing (2010 ed.). W3K Publishing. ISBN 978-0-9745607-2-4. Archived from the original on 2022-07-14. Retrieved 2020-03-28.
  • ^ Gustafson, John L.; Yonemoto, Isaac (2017-06-12). "Beating Floating Point at its Own Game: Posit Arithmetic" (PDF). Archived (PDF) from the original on 2022-07-14. Retrieved 2019-12-28.
  • Further reading[edit]

    External links[edit]


    Retrieved from "https://en.wikipedia.org/w/index.php?title=Sigmoid_function&oldid=1223156273"

    Categories: 
    Elementary special functions
    Artificial neural networks
    Hidden categories: 
    Articles with short description
    Short description is different from Wikidata
    Use dmy dates from July 2022
    Use list-defined references from July 2022
    Commons category link is on Wikidata
    Pages displaying short descriptions of redirect targets via Module:Annotated link
     



    This page was last edited on 10 May 2024, at 07:27 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki