Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Input methods  





2 Uses  





3 In fiction  





4 See also  





5 References  














Silent speech interface






Русский
 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Silent speech interface is a device that allows speech communication without using the sound made when people vocalize their speech sounds. As such it is a type of electronic lip reading. It works by the computer identifying the phonemes that an individual pronounces from nonauditory sources of information about their speech movements. These are then used to recreate the speech using speech synthesis.[1]

Input methods[edit]

Silent speech interface systems have been created using ultrasound and optical camera input of tongue and lip movements.[2] Electromagnetic devices are another technique for tracking tongue and lip movements.[3] The detection of speech movements by electromyography of speech articulator muscles and the larynx is another technique.[4][5] Another source of information is the vocal tract resonance signals that get transmitted through bone conduction called non-audible murmurs.[6] They have also been created as a brain–computer interface using brain activity in the motor cortex obtained from intracortical microelectrodes.[7]

Uses[edit]

Such devices are created as aids to those unable to create the sound phonation needed for audible speech such as after laryngectomies.[8] Another use is for communication when speech is masked by background noise or distorted by self-contained breathing apparatus. A further practical use is where a need exists for silent communication, such as when privacy is required in a public place, or hands-free data silent transmission is needed during a military or security operation.[2][9]

In 2002, the Japanese company NTT DoCoMo announced it had created a silent mobile phone using electromyography and imaging of lip movement. The company stated that "the spur to developing such a phone was ridding public places of noise," adding that, "the technology is also expected to help people who have permanently lost their voice."[10] The feasibility of using silent speech interfaces for practical communication has since then been shown.[11]

In 2019, Arnav Kapur, a researcher from the Massachusetts Institute of Technology, conducted a study known as AlterEgo. Its implementation of the silent speech interface enables direct communication between the human brain and external devices through stimulation of the speech muscles. By leveraging neural signals associated with speech and language, the AlterEgo system deciphers the user's intended words and translates them into text or commands without the need for audible speech.[12]

In fiction[edit]

The decoding of silent speech using a computer played an important role in Arthur C. Clarke's story and Stanley Kubrick's associated film A Space Odyssey. In this, HAL 9000, a computer controlling spaceship Discovery One, bound for Jupiter, discovers a plot to deactivate it by the mission astronauts Dave Bowman and Frank Poole through lip reading their conversations.[13]

InOrson Scott Card’s series (including Ender’s Game), the artificial intelligence can be spoken to while the protagonist wears a movement sensor in his jaw, enabling him to converse with the AI without making noise. He also wears an ear implant.

See also[edit]

References[edit]

  1. ^ Denby B, Schultz T, Honda K, Hueber T, Gilbert J.M., Brumberg J.S. (2010). Silent speech interfaces. Speech Communication 52: 270–287. doi:10.1016/j.specom.2009.08.002
  • ^ a b Hueber T, Benaroya E-L, Chollet G, Denby B, Dreyfus G, Stone M. (2010). Development of a silent speech interface driven by ultrasound and optical images of the tongue and lips. Speech Communication, 52 288–300. doi:10.1016/j.specom.2009.11.004
  • ^ Wang, J., Samal, A., & Green, J. R. (2014). Preliminary test of a real-time, interactive silent speech interface based on electromagnetic articulograph, the 5th ACL/ISCA Workshop on Speech and Language Processing for Assistive Technologies, Baltimore, MD, 38-45.
  • ^ Jorgensen C, Dusan S. (2010). Speech interfaces based upon surface electromyography. Speech Communication, 52: 354–366. doi:10.1016/j.specom.2009.11.003
  • ^ Schultz T, Wand M. (2010). Modeling Coarticulation in EMG-based Continuous Speech Recognition. Speech Communication, 52: 341-353. doi:10.1016/j.specom.2009.12.002
  • ^ Hirahara T, Otani M, Shimizu S, Toda T, Nakamura K, Nakajima Y, Shikano K. (2010). Silent-speech enhancement using body-conducted vocal-tract resonance signals. Speech Communication, 52:301–313. doi:10.1016/j.specom.2009.12.001
  • ^ Brumberg J.S., Nieto-Castanon A, Kennedy P.R., Guenther F.H. (2010). Brain–computer interfaces for speech communication. Speech Communication 52:367–379. 2010 doi:10.1016/j.specom.2010.01.001
  • ^ Deng Y., Patel R., Heaton J. T., Colby G., Gilmore L. D., Cabrera J., Roy S. H., De Luca C.J., Meltzner G. S.(2009). Disordered speech recognition using acoustic and sEMG signals. In INTERSPEECH-2009, 644-647.
  • ^ Deng Y., Colby G., Heaton J. T., and Meltzner HG. S. (2012). Signal Processing Advances for the MUTE sEMG-Based Silent Speech Recognition System. Military Communication Conference, MILCOM 2012.
  • ^ Fitzpatrick M. (2002). Lip-reading cellphone silences loudmouths. New Scientist.
  • ^ Wand M, Schultz T. (2011). Session-independent EMG-based Speech Recognition. Proceedings of the 4th International Conference on Bio-inspired Systems and Signal Processing.
  • ^ "Project Overview ‹ AlterEgo". MIT Media Lab. Retrieved 2024-05-20.
  • ^ Clarke, Arthur C. (1972). The Lost Worlds of 2001. London: Sidgwick and Jackson. ISBN 0-283-97903-8.

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=Silent_speech_interface&oldid=1230620906"

    Categories: 
    Speech recognition
    Speech synthesis
    User interface techniques
    Assistive technology
    Hidden categories: 
    Articles to be merged from March 2024
    All articles to be merged
     



    This page was last edited on 23 June 2024, at 19:13 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki