Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 History  





2 Types  





3 Properties  





4 Regeneration  





5 Preparation  





6 Uses  



6.1  Desiccant  





6.2  Chemistry  





6.3  Cat litter  





6.4  Food additive  





6.5  Water filtration  





6.6  Humidity indicator (color-changing silica gel)  







7 Hazards  





8 References  





9 External links  














Silica gel






العربية
Azərbaycanca
تۆرکجه
Беларуская
Български
Bosanski
Català
Čeština
Dansk
Deutsch
Eesti
Español
Esperanto
فارسی
Français
Gaeilge
Galego

Հայերեն
ि
Hrvatski
Bahasa Indonesia
Italiano
עברית
Кыргызча
Македонски
Nederlands

Polski
Português
Română
Русский
Српски / srpski
Srpskohrvatski / српскохрватски
Suomi
Svenska
Türkçe
Українська
Tiếng Vit


 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 




In other projects  



Wikimedia Commons
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Silica gel
Identifiers

CAS Number

  • 1343-98-2 (Silicic acid) checkY
  • ChemSpider
    • none
    ECHA InfoCard 100.065.880 Edit this at Wikidata
    UNII

    CompTox Dashboard (EPA)

    Properties

    Chemical formula

    SiO2
    Molar mass 60.08 g/mol
    Appearance Transparent beads
    Odor Odorless

    Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

    ☒N verify (what is checkY☒N ?)

    Infobox references

    Colloidal silica gel with light opalescence

    Silica gel is an amorphous and porous form of silicon dioxide (silica), consisting of an irregular tridimensional framework of alternating silicon and oxygen atoms with nanometer-scale voids and pores. The voids may contain water or some other liquids, or may be filled by gas or vacuum. In the last case, the material is properly called silica xerogel.

    Silica xerogel with an average pore size of 2.4 nanometers has a strong affinity for water molecules and is widely used as a desiccant. It is hard and translucent, but considerably softer than massive silica glassorquartz, and remains hard when saturated with water.

    Silica xerogel is usually commercialized as coarse granules or beads, a few millimeters in diameter. Some grains may contain small amounts of indicator substance that changes color when they have absorbed some water. Small paper envelopes containing silica xerogel pellets, usually with a "do not eat" warning, are often included in dry food packages to absorb any humidity that might cause spoilage of the food.

    'Wet' silica gel, as may be freshly prepared from alkali silicate solutions, may vary in consistency from a soft transparent gel, similar to gelatinoragar, to a hard solid, namely a water-logged xerogel. It is sometimes used in laboratory processes, for example to suppress convection in liquids or prevent settling of suspended particles.[4]

    History[edit]

    Silica gel was in existence as early as the 1640s as a scientific curiosity.[5] It was used in World War I for the adsorption of vapors and gases in gas mask canisters. The synthetic route for producing silica gel was patented in 1918 by Walter A. Patrick, a chemistry professor at Johns Hopkins University.

    Types[edit]

    Silica alumina gel - light yellow, chemically stable, flame-resistant, insoluble except in alkali or hydrofluoric acid. Superficial polarity, thermal stability, performance greater than fine-pored silica gel.

    Stabilizing silica gel - non-crystalline micro-porous solid powder, nontoxic, flame-resisting, used in brewery of grains for beer to improve taste, clearness, color, and foam and for removal of non-micro-organism impurities.

    Properties[edit]

    Silica gel's high specific surface area (around 750–800 m2/g (230,000–240,000 sq ft/oz))[6] allows it to adsorb water readily, making it useful as a desiccant (drying agent). Silica gel is often described as "absorbing" moisture, which may be appropriate when the gel's microscopic structure is ignored, as in silica gel packs or other products. However, material silica gel removes moisture by adsorption onto the surface of its numerous pores rather than by absorption into the bulk of the gel.

    Silica gel is able to adsorb up to 37% of its own weight in moisture in high-humidity environments.[7] This moisture can be released upon heating at 120 °C for extended periods of time. This makes it reusable multiple times with very little, if any, loss of efficiency.

    Regeneration[edit]

    Once saturated with water, the gel may be regenerated by heating it to 120 °C (248 °F) for 1–2 hours.[7] Some types of silica gel will "pop" when exposed to enough water. This is caused by breakage of the silica spheres when contacting the water.[8]

    Preparation[edit]

    An aqueous solution of sodium silicate is acidified to produce a gelatinous precipitate that is washed, then dehydrated to produce colorless silica gel.[6] When a visible indication of the moisture content of the silica gel is required, ammonium tetrachlorocobaltate(II) (NH4)2[CoCl4] or cobalt(II) chloride CoCl2 is added.[6] This will cause the gel to be blue when dry and pink when hydrated.[6] Due to a link between the cobalt chloride and cancer, it has been forbidden in Europe for use in silica gel.[9] An alternative indicator is methyl violet which is orange when dry and green when hydrated.

    Uses[edit]

    Desiccant[edit]

    Silica gel, as beads packed in a permeable bag, is a commonly used desiccant.

    Moisture can cause mold and spoilage in many items.[10][11] It can also damage electronics by causing condensation and shorten the lifespan of chemicals, like those in vitamins.[citation needed] Silica gel packets help by absorbing moisture and extending the life of these items.[12][13][14] They can even be useful for drying out electronics that have gotten wet accidentally.[15][16][17]

    Silica gel may also be used to keep the relative humidity inside a high frequency radio or satellite transmission system waveguide as low as possible (see also humidity buffering).[18] Excessive moisture buildup within a waveguide can cause arcing inside the waveguide itself, damaging the power amplifier feeding it. Also, the beads of water that form and condense inside the waveguide change the characteristic impedance and frequency, degrading the signal. It is common for a small compressed air system (similar to a small home aquarium pump) to be employed to circulate the air inside the waveguide over a jar of silica gel.

    Silica gel is also used to dry the air in industrial compressed air systems. Air from the compressor discharge flows through a bed of silica gel beads. The silica gel adsorbs moisture from the air, preventing damage at the point of use of the compressed air due to condensation or moisture. The same system is used to dry the compressed air on railway locomotives, where condensation and ice in the brake air pipes can lead to brake failure.

    Prior to widespread use of air-conditioning, salt shakers with caps containing silica gel beads to keep the salt dry enough to prevent clumping were marketed in the USA, replacing the practice of including a few grains of rice in salt shakers to effect the same drying.

    Silica gel is sometimes used as a preservation tool to control relative humidity in museum and library exhibitions and storage.

    Other applications include diagnostic test strips, inhalation devices, syringes, drug test kits, and hospital sanitation kits.

    Chemistry[edit]

    Chromatography column

    In chemistry, silica gel is used in chromatography as a stationary phase. In column chromatography, the stationary phase is most often composed of silica gel particles of 40–63 μm. Different particle sizes are used for different kinds of column chromatography as the particle size is related to surface area. The differences in particle size dictate if the silica gel should be used for flash or gravity chromatography. In this application, due to silica gel's polarity, non-polar components tend to elute before more polar ones, hence the name normal phase chromatography. However, when hydrophobic groups (such as C18 groups) are attached to the silica gel then polar components elute first and the method is referred to as reverse phase chromatography. Silica gel is also applied to aluminium, glass, or plastic sheets for thin layer chromatography.

    The hydroxy (OH) groups on the surface of silica can be functionalized to afford specialty silica gels that exhibit unique stationary phase parameters. These so-called functionalized silica gels are also used in organic synthesis and purification as insoluble reagents and scavengers.

    Chelating groups have also been covalently bound to silica gel. These materials have the ability to remove metal ions selectively from aqueous solutions. Chelating groups can be covalently bound to polyamines that have been grafted onto a silica gel surface producing a material of greater mechanical integrity. Silica gel is also combined with alkali metals to form a M-SG reducing agent. (See SiGNa chemistry)

    Silica gel is not expected to biodegrade in either water or soil.[19]

    Cat litter[edit]

    Silica gel is also used as cat litter,[20] by itself or in combination with more traditional materials, such as clays including bentonite. It is non-tracking and virtually odorless.

    Food additive[edit]

    Silica gel, also referred to as silicon dioxide or synthetic amorphous silica (SAS), is listed by the FDA in the United States as generally recognized as safe (GRAS), meaning it can be added to food products without needing approval. Silica is allowed to be added to food in the USA at up to 2% as permitted under 21 CFR 172.480. In the EU, it can be in up to 5% concentrations.[21] In 2018, a re-evaluation by the EFSA Panel on Food Additives and Nutrient Sources added to Food found no indications of toxicity even at the highest estimates of exposure level.[22]

    Listed uses include: anticaking agent, defoaming agent, stabilizer, adsorbent, carrier, conditioning agent, chill proofing agent, filter aid, emulsifying agent, viscosity control agent, and anti-settling agent.[23] Silica can be found commonly in foods including baked goods, spices and herbs, dairy products, cocoa products, and more.[22]

    Water filtration[edit]

    Given the water adsorption properties of silica gel, it is used in domestic water filters.[24] The surface structure of silica gel allows the adsorption of some minerals that are dissolved in the water,[25] or "Ion-exchange" as it is marketed. Due to the lack of regulations for domestic water filtration products, no studies validate the manufacturer claims regarding the effectiveness of the filtration system.

    Humidity indicator (color-changing silica gel)[edit]

    Indicating silica gel

    Silica gel may be doped with a moisture indicator that gradually changes its color when it transitions from the anhydrous (dry) state to the hydrated (wet) state. Common indicators are cobalt(II) chloride and methyl violet. Cobalt (II) chloride is deep blue when dry and pink when wet, but it is toxic and carcinogenic, and was reclassified by the European Union in July 2000 as a toxic material.[26] Methyl violet may be formulated to change from orange to green, or orange to colorless. It also is toxic and potentially carcinogenic,[27] but is safe enough to have medicinal uses. Ferric and ferrous salts, sometimes combined with small amounts of sodium hydroxide, provide a better alternative. In particular, ferric sulfate and double salts like ammonium iron(III) sulfate (iron alum), ammonium iron(II) sulfate, and potassium iron(III) sulfate all result in a color change from amber/yellow when dry to colorless/white when saturated.[28][29]

    Hazards[edit]

    Silica gel is non-toxic, non-flammable, and non-reactive and stable with ordinary usage. It will react with hydrogen fluoride, fluorine, oxygen difluoride, chlorine trifluoride, strong acids, strong bases, and oxidizers.[19] Silica gel is irritating to the respiratory tract and may cause irritation of the digestive tract. Dust from the beads may cause irritation to the skin and eyes, so precautions should be taken.[30] Crystalline silica dust can cause silicosis, but synthetic amorphous silica gel is indurated, so it does not cause silicosis. Additional hazards[example needed] may occur when doped with a humidity indicator.

    References[edit]

    1. ^ Silica gel, site jtbaker.com
  • ^ Silica gel, site chemcas.org
  • ^ Silicon dioxide, site echa.europa.eu
  • ^ Henisch, H.K. (1988). Crystals in Gels and Liesegang Rings. Cambridge: Cambridge University Press. ISBN 0521345030.
  • ^ Feldman, Maryann; Desrochers, Pierre (March 2003). "Research Universities and Local Economic Development: Lessons from the History of the Johns Hopkins University" (PDF). Industry and Innovation. 10 (1): 5–24. doi:10.1080/1366271032000068078. S2CID 154423229. Archived from the original (PDF) on 2005-11-12.
  • ^ a b c d Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. ISBN 978-0-08-037941-8.
  • ^ a b Chandradhas, Susheel (27 August 2016). "How To Recharge Silica Gel Crystals". Beyond Photo Tips. Retrieved 2 November 2022.
  • ^ Spence Konde, "Preparation of High-Silica Zeolite Beads From Silica Gel" Archived 2016-03-04 at the Wayback Machine, retrieved 2011-09-26
  • ^ "Blue Silicagel & Conclusions: Safety information on blue silicagel". Archived from the original on 2016-01-05.
  • ^ "Prevent bacteria from feasting on your fresh produce, causing spoilage". MSU Extension. 2013-01-30. Retrieved 2024-03-08.
  • ^ Command, United States Naval Education and Training (1978). Mess Management Specialist 3 &2. Department of Defense, Navy Department, Office of the Chief of Naval Operations], Naval Education and Training Command. p. 91.
  • ^ Machinery and Production Engineering. Machinery Publishing Company. 1951.
  • ^ Anderson, Gary A. (1988). Floral Design and Marketing. Ohio Agricultural Education Curriculum Materials Service, the Ohio State University.
  • ^ Varlamoff, Marie-Thérèse; Kremp, Virginie; Conservation, IFLA Programme on Preservation and; Resources, Council on Library and Information (1998). IFLA Principles for the Care and Handling of Library Material. International Federation of Library Associations and Institutions, Core Programme on Preservation and Conservation. ISBN 978-2-912743-00-8.
  • ^ Rudderham, T. A. iPhone 5s Guide. iOS Guides.
  • ^ Birstein, S. J.; Lyon, A. M. (1949). Adsorption of Nitrogen Tetroxide on Silica Gel. United States Atomic Energy Commission, Technical Information Service.
  • ^ Smits, Benjamin Levi (1926). Silica Gel. Michigan State College of Agriculture and Applied Science.
  • ^ Sabry, Fouad (2022-01-16). Aerogel: Want to Colonize Mars? Aerogel could help us farm and survive on Mars "in our lifetimes". One Billion Knowledgeable.
  • ^ a b Environmental Health and Safety (2007-09-10). "Silica Gel". Retrieved 2008-01-12.
  • ^ Andrew Kantor (2004-12-10). "Non-Tech High Tech Litters the Landscape". USA Today. Retrieved 2008-03-02.
  • ^ "Notification of the GRAS Determination of Silicon Dioxide When Added Directly or Indirectly to Human Food" (PDF). Archived from the original (PDF) on April 18, 2013.
  • ^ a b Younes, M.; Aggett, P.; Aguilar, F. (2018). "Scientific Opinion on the re-evaluation of silicon dioxide (E 551) as a food additive". EFSA Journal. 16 (1): 5088–5158. doi:10.2903/j.efsa.2018.5088. PMC 7009582. PMID 32625658. S2CID 79503431.
  • ^ "GRAS Notice (GRN) No. 298" (PDF). Archived from the original (PDF) on April 9, 2011.
  • ^ ZeroWater
  • ^ Peri, J. B.; Hensley Jr., A. L. (1968). "The surface structure of silica gel". The Journal of Physical Chemistry. 72 (8): 2926–2933. doi:10.1021/j100854a041.
  • ^ "Classifications - CL Inventory".
  • ^ "Methyl Violet Safety Data Sheet" (PDF). labchem.
  • ^ WO patent WO2000065339A1, Stephen Moreton & Graham James Earl, "Humidity indicators", published 2000-11-02 
  • ^ "SORBSIL CHAMELEON Safety Data Sheet" (PDF). OkerChemie.
  • ^ Fisher Scientific (1997-02-09). "Material Safety Data Sheet: Silica Gel Dessiccant". Retrieved 2008-01-12.
  • External links[edit]


    Retrieved from "https://en.wikipedia.org/w/index.php?title=Silica_gel&oldid=1235091781"

    Categories: 
    Conservation and restoration materials
    Desiccants
    Gels
    Glass types
    Silicon dioxide
    American inventions
    Hidden categories: 
    Webarchive template wayback links
    Chemical articles with multiple compound IDs
    Multiple chemicals in an infobox that need indexing
    Chemicals that do not have a ChemSpider ID assigned
    Chemical articles with multiple CAS registry numbers
    Chemicals without a PubChem CID
    Articles without InChI source
    Articles without EBI source
    Articles without KEGG source
    ECHA InfoCard ID from Wikidata
    Articles containing unverified chemical infoboxes
    Chembox image size set
    Articles with short description
    Short description is different from Wikidata
    All articles with unsourced statements
    Articles with unsourced statements from March 2024
    All articles needing examples
    Articles needing examples from March 2024
    Commons category link from Wikidata
     



    This page was last edited on 17 July 2024, at 16:53 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki