Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Comparison to vacuum tube photomultipliers  



1.1  Advantages  





1.2  Disadvantages  







2 Comparison to avalanche photodiodes  





3 See also  





4 References  














Silicon photomultiplier






Català
Deutsch
Español
Italiano
 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


One of the first SiPM produced by FBK research center (formerly IRST) located in Trento, Italy.

Insolid-state electronics, silicon photomultipliers (SiPMs) are single-photon-sensitive devices based on single-photon avalanche diodes (SPADs) implemented on common silicon substrate.[1] The dimension of each single SPAD can vary from 10 to 100 micrometres, with a density of up to 10,000 per square millimeter. Every SPAD in a SiPM operates in Geiger mode and is coupled with the others by a metal or polysilicon quenching resistor. Although the device works in digital/switching mode, most SiPMs are analog devices because the microcells are read in parallel, making it possible to generate signals with a dynamic range from a single photon to 1000 photons for a device with just a square-millimeter area. More advanced readout schemes are used for lidar applications.[2] The supply voltage (Vb) depends on the APD technology used and typically varies between 20 V and 100 V, thus being from 15 to 75 times lower than the voltage required for traditional photomultiplier tube (PMT) operation.

Typical specifications for a SiPM:

SiPM for medical imaging are attractive candidates for the replacement of the conventional PMT in positron emission tomography (PET) and SPECT imaging, since they provide high gain with low voltage and fast response, they are very compact and compatible with magnetic resonance setups. Nevertheless, there are still several challenges, for example, SiPM requires optimization for larger matrices, signal amplification and digitization.

Comparison to vacuum tube photomultipliers[edit]

Advantages[edit]

Compared to conventional PMTs, the photoelectron gain in SiPMs is typically more deterministic, resulting in low or even negligible excess noise factor. As a result, the SNR (Signal-to-noise ratio) for a fixed number of detected photons can be higher than that from a PMT. Conversely, the stochastic gain of a PMT typically requires more detected photons to obtain the same SNR.

Mass production of silicon electronics by multiple vendors allows SiPMs to be made very cheaply relative to vacuum tubes.

Bias voltages are 10-100x times lower, simplifying electronics.

In the red to near-infrared, silicon enables much higher quantum efficiency than available PMT photocathode materials.

Dynamic range can be orders of magnitude larger than a PMT if large numbers of SPADs are arrayed together, enabling faster imaging rates or higher SNR without saturation.

Disadvantages[edit]

Dark current is typically much higher at a given temperature than a PMT. Thus, a SiPM may require subambient cooling while a PMT used in the same application may not, resulting in increased complexity and cost. Similarly, obtaining large active areas may be difficult due to higher dark counts per area than in PMTs.

The impulse response of a SiPM has a complex, multiexponential shape. Relative to a PMT, obtaining a symmetric pulse shape or uniform frequency response may require more complex analog filtering or pulse shaping electronics.

Comparison to avalanche photodiodes[edit]

Conventional avalanche photodiodes (APDs) also produce an amplified analog current in response to light absorption. However, in an APD, the total gain is much lower and the excess noise factor much higher. Conversely, quantum efficiency can be higher and dark noise lower.

See also[edit]

References[edit]

  1. ^ Mascotto, Massimo (17 February 2011), Silicon Photomultiplier Technology at STMicroelectronics (PDF), retrieved 25 July 2020
  • ^ A new generation, long distance ranging Time-of-Flight sensor based on ST’s FlightSense™ technology

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=Silicon_photomultiplier&oldid=1226388447"

    Categories: 
    Optoelectronics
    Silicon photonics devices
    Particle detectors
    Photomultipliers
    Photodetectors
    Single-photon detectors
    Hidden categories: 
    Articles with short description
    Short description matches Wikidata
    Articles needing additional references from November 2015
    All articles needing additional references
     



    This page was last edited on 30 May 2024, at 09:30 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki