Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 See also  





2 References  














Single bond






العربية

Bosanski
Čeština
Deutsch
Eesti
Español
فارسی
Gaeilge

ि
Italiano
Македонски
Bahasa Melayu
Nederlands

Română
Slovenčina
Српски / srpski
Srpskohrvatski / српскохрватски
ி
Українська



 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Lewis structure for molecular hydrogen.
Lewis structure for molecular hydrogen. Note depiction of the single bond.
Lewis structure for methane.
Lewis structure for methane. Note depiction of the four single bonds between the carbon and hydrogen atoms.
Lewis structure for an alkane.
Lewis structure for an alkane. Note that all the bonds are single covalent bonds.

Inchemistry, a single bond is a chemical bond between two atoms involving two valence electrons. That is, the atoms share one pair of electrons where the bond forms.[1] Therefore, a single bond is a type of covalent bond. When shared, each of the two electrons involved is no longer in the sole possession of the orbital in which it originated. Rather, both of the two electrons spend time in either of the orbitals which overlap in the bonding process. As a Lewis structure, a single bond is denoted as AːA or A-A, for which A represents an element.[2] In the first rendition, each dot represents a shared electron, and in the second rendition, the bar represents both of the electrons shared in the single bond.

A covalent bond can also be a double bond or a triple bond. A single bond is weaker than either a double bond or a triple bond. This difference in strength can be explained by examining the component bonds of which each of these types of covalent bonds consists (Moore, Stanitski, and Jurs 393).

Usually, a single bond is a sigma bond. An exception is the bond in diboron, which is a pi bond. In contrast, the double bond consists of one sigma bond and one pi bond, and a triple bond consists of one sigma bond and two pi bonds (Moore, Stanitski, and Jurs 396). The number of component bonds is what determines the strength disparity. It stands to reason that the single bond is the weakest of the three because it consists of only a sigma bond, and the double bond or triple bond consist not only of this type of component bond but also at least one additional bond.

The single bond has the capacity for rotation, a property not possessed by the double bond or the triple bond. The structure of pi bonds does not allow for rotation (at least not at 298 K), so the double bond and the triple bond which contain pi bonds are held due to this property. The sigma bond is not so restrictive, and the single bond is able to rotate using the sigma bond as the axis of rotation (Moore, Stanitski, and Jurs 396-397).

Another property comparison can be made in bond length. Single bonds are the longest of the three types of covalent bonds as interatomic attraction is greater in the two other types, double and triple. The increase in component bonds is the reason for this attraction increase as more electrons are shared between the bonded atoms (Moore, Stanitski, and Jurs 343).

Single bonds are often seen in diatomic molecules. Examples of this use of single bonds include H2, F2, and HCl.

Single bonds are also seen in molecules made up of more than two atoms. Examples of this use of single bonds include:

Single bonding even appears in molecules as complex as hydrocarbons larger than methane. The type of covalent bonding in hydrocarbons is extremely important in the nomenclature of these molecules. Hydrocarbons containing only single bonds are referred to as alkanes (Moore, Stanitski, and Jurs 334). The names of specific molecules which belong to this group end with the suffix -ane. Examples include ethane, 2-methylbutane, and cyclopentane (Moore, Stanitski, and Jurs 335).

See also[edit]

References[edit]

  1. ^ "covalent bonding - single bonds". Chemguide.co.uk. Retrieved 2012-08-12.
  • ^ Steehler, Jack K. (December 2001). "Chemistry: The Molecular Science (Moore, John W.; Stanitski, Conrad L.; Jurs, Peter C.)". Journal of Chemical Education. 78 (12): 1598. doi:10.1021/ed078p1598. ISSN 0021-9584.

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=Single_bond&oldid=1229691542"

    Category: 
    Chemical bonding
    Hidden categories: 
    Articles with short description
    Short description is different from Wikidata
    Articles needing additional references from September 2023
    All articles needing additional references
     



    This page was last edited on 18 June 2024, at 06:01 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki