Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Conjectures  



1.1  Current status  







2 See also  





3 Notes  





4 References  





5 External links  














Special values of L-functions








 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Inmathematics, the study of special values of L-functions is a subfield of number theory devoted to generalising formulae such as the Leibniz formula for pi, namely

by the recognition that expression on the left-hand side is also where is the Dirichlet L-function for the field of Gaussian rational numbers. This formula is a special case of the analytic class number formula, and in those terms reads that the Gaussian field has class number 1. The factor on the right hand side of the formula corresponds to the fact that this field contains four roots of unity.

Conjectures[edit]

There are two families of conjectures, formulated for general classes of L-functions (the very general setting being for L-functions associated to Chow motives over number fields), the division into two reflecting the questions of:

  1. how to replace in the Leibniz formula by some other "transcendental" number (regardless of whether it is currently possible for transcendental number theory to provide a proof of the transcendence); and
  2. how to generalise the rational factor in the formula (class number divided by number of roots of unity) by some algebraic construction of a rational number that will represent the ratio of the L-function value to the "transcendental" factor.

Subsidiary explanations are given for the integer values of for which a formulae of this sort involving can be expected to hold.

The conjectures for (a) are called Beilinson's conjectures, for Alexander Beilinson.[1][2] The idea is to abstract from the regulator of a number field to some "higher regulator" (the Beilinson regulator), a determinant constructed on a real vector space that comes from algebraic K-theory.

The conjectures for (b) are called the Bloch–Kato conjectures for special values (for Spencer Bloch and Kazuya Kato; this circle of ideas is distinct from the Bloch–Kato conjecture of K-theory, extending the Milnor conjecture, a proof of which was announced in 2009). They are also called the Tamagawa number conjecture, a name arising via the Birch–Swinnerton-Dyer conjecture and its formulation as an elliptic curve analogue of the Tamagawa number problem for linear algebraic groups.[3] In a further extension, the equivariant Tamagawa number conjecture (ETNC) has been formulated, to consolidate the connection of these ideas with Iwasawa theory, and its so-called Main Conjecture.

Current status[edit]

All of these conjectures are known to be true only in special cases.

See also[edit]

Notes[edit]

  • ^ Matthias Flach, The Tamagawa Number Conjecture (PDF)
  • References[edit]

    External links[edit]


    Retrieved from "https://en.wikipedia.org/w/index.php?title=Special_values_of_L-functions&oldid=1230579476"

    Category: 
    Zeta and L-functions
    Hidden categories: 
    Articles with short description
    Short description matches Wikidata
    Articles needing additional references from April 2019
    All articles needing additional references
     



    This page was last edited on 23 June 2024, at 14:55 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki