Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Examples of spectral methods  



1.1  A concrete, linear example  



1.1.1  Algorithm  







1.2  Nonlinear example  







2 A relationship with the spectral element method  





3 See also  





4 References  














Spectral method






Deutsch
Español
فارسی

Русский
Українська
 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Spectral methods are a class of techniques used in applied mathematics and scientific computing to numerically solve certain differential equations. The idea is to write the solution of the differential equation as a sum of certain "basis functions" (for example, as a Fourier series which is a sum of sinusoids) and then to choose the coefficients in the sum in order to satisfy the differential equation as well as possible.

Spectral methods and finite-element methods are closely related and built on the same ideas; the main difference between them is that spectral methods use basis functions that are generally nonzero over the whole domain, while finite element methods use basis functions that are nonzero only on small subdomains (compact support). Consequently, spectral methods connect variables globally while finite elements do so locally. Partially for this reason, spectral methods have excellent error properties, with the so-called "exponential convergence" being the fastest possible, when the solution is smooth. However, there are no known three-dimensional single-domain spectral shock capturing results (shock waves are not smooth).[1] In the finite-element community, a method where the degree of the elements is very high or increases as the grid parameter h increases is sometimes called a spectral-element method.

Spectral methods can be used to solve differential equations (PDEs, ODEs, eigenvalue, etc) and optimization problems. When applying spectral methods to time-dependent PDEs, the solution is typically written as a sum of basis functions with time-dependent coefficients; substituting this in the PDE yields a system of ODEs in the coefficients which can be solved using any numerical method for ODEs. Eigenvalue problems for ODEs are similarly converted to matrix eigenvalue problems [citation needed].

Spectral methods were developed in a long series of papers by Steven Orszag starting in 1969 including, but not limited to, Fourier series methods for periodic geometry problems, polynomial spectral methods for finite and unbounded geometry problems, pseudospectral methods for highly nonlinear problems, and spectral iteration methods for fast solution of steady-state problems. The implementation of the spectral method is normally accomplished either with collocation or a Galerkin or a Tau approach . For very small problems, the spectral method is unique in that solutions may be written out symbolically, yielding a practical alternative to series solutions for differential equations.

Spectral methods can be computationally less expensive and easier to implement than finite element methods; they shine best when high accuracy is sought in simple domains with smooth solutions. However, because of their global nature, the matrices associated with step computation are dense and computational efficiency will quickly suffer when there are many degrees of freedom (with some exceptions, for example if matrix applications can be written as Fourier transforms). For larger problems and nonsmooth solutions, finite elements will generally work better due to sparse matrices and better modelling of discontinuities and sharp bends.

Examples of spectral methods[edit]

A concrete, linear example[edit]

Here we presume an understanding of basic multivariate calculus and Fourier series. If is a known, complex-valued function of two real variables, and g is periodic in x and y (that is, ) then we are interested in finding a function f(x,y) so that

where the expression on the left denotes the second partial derivatives of finx and y, respectively. This is the Poisson equation, and can be physically interpreted as some sort of heat conduction problem, or a problem in potential theory, among other possibilities.

If we write f and g in Fourier series:

and substitute into the differential equation, we obtain this equation:

We have exchanged partial differentiation with an infinite sum, which is legitimate if we assume for instance that f has a continuous second derivative. By the uniqueness theorem for Fourier expansions, we must then equate the Fourier coefficients term by term, giving

(*)

which is an explicit formula for the Fourier coefficients aj,k.

With periodic boundary conditions, the Poisson equation possesses a solution only if b0,0 = 0. Therefore, we can freely choose a0,0 which will be equal to the mean of the resolution. This corresponds to choosing the integration constant.

To turn this into an algorithm, only finitely many frequencies are solved for. This introduces an error which can be shown to be proportional to , where and is the highest frequency treated.

Algorithm[edit]

  1. Compute the Fourier transform (bj,k) of g.
  2. Compute the Fourier transform (aj,k) of f via the formula (*).
  3. Compute f by taking an inverse Fourier transform of (aj,k).

Since we're only interested in a finite window of frequencies (of size n, say) this can be done using a fast Fourier transform algorithm. Therefore, globally the algorithm runs in time O(n log n).

Nonlinear example[edit]

We wish to solve the forced, transient, nonlinear Burgers' equation using a spectral approach.

Given on the periodic domain , find such that

where ρ is the viscosity coefficient. In weak conservative form this becomes

where following inner product notation. Integrating by parts and using periodicity grants

To apply the Fourier–Galerkin method, choose both

and

where . This reduces the problem to finding such that

Using the orthogonality relation where is the Kronecker delta, we simplify the above three terms for each to see

Assemble the three terms for each to obtain

Dividing through by , we finally arrive at

With Fourier transformed initial conditions and forcing , this coupled system of ordinary differential equations may be integrated in time (using, e.g., a Runge Kutta technique) to find a solution. The nonlinear term is a convolution, and there are several transform-based techniques for evaluating it efficiently. See the references by Boyd and Canuto et al. for more details.

A relationship with the spectral element method[edit]

One can show that if is infinitely differentiable, then the numerical algorithm using Fast Fourier Transforms will converge faster than any polynomial in the grid size h. That is, for any n>0, there is a such that the error is less than for all sufficiently small values of . We say that the spectral method is of order , for every n>0.

Because a spectral element method is a finite element method of very high order, there is a similarity in the convergence properties. However, whereas the spectral method is based on the eigendecomposition of the particular boundary value problem, the finite element method does not use that information and works for arbitrary elliptic boundary value problems.

See also[edit]

References[edit]

  1. ^ pp 235, Spectral Methods: evolution to complex geometries and applications to fluid dynamics, By Canuto, Hussaini, Quarteroni and Zang, Springer, 2007.

Retrieved from "https://en.wikipedia.org/w/index.php?title=Spectral_method&oldid=1205120684"

Categories: 
Numerical analysis
Numerical differential equations
Hidden categories: 
Articles with short description
Short description is different from Wikidata
Articles lacking in-text citations from August 2013
All articles lacking in-text citations
All articles with unsourced statements
Articles with unsourced statements from August 2013
 



This page was last edited on 8 February 2024, at 22:44 (UTC).

Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



Privacy policy

About Wikipedia

Disclaimers

Contact Wikipedia

Code of Conduct

Developers

Statistics

Cookie statement

Mobile view



Wikimedia Foundation
Powered by MediaWiki