Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Chemical and physical characteristics  





2 Formation processes  





3 Climate proxies  





4 Types and categories  





5 Calthemites  





6 Gallery  





7 See also  





8 References  





9 External links  














Speleothem






Català
Čeština
Deutsch
Eesti
Ελληνικά
Español
Euskara
فارسی
Français
Galego

Bahasa Indonesia
Italiano
עברית
Limburgs
Nederlands

Norsk nynorsk
Polski
Português
Русский
Slovenščina
Suomi
Svenska
Türkçe
Українська

 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 




In other projects  



Wikimedia Commons
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Cave labeled with the six most common types of speleothems: flowstone, columns, drapery, stalagmites, stalactites and straws

Aspeleothem (/ˈspliəθɛm/; from Ancient Greek σπήλαιον (spḗlaion) 'cave', and θέμα (théma) 'deposit') is a geological formationbymineral deposits that accumulate over time in natural caves.[1] Speleothems most commonly form in calcareous caves due to carbonate dissolution reactions. They can take a variety of forms, depending on their depositional history and environment. Their chemical composition, gradual growth, and preservation in caves make them useful paleoclimatic proxies.

Chemical and physical characteristics

[edit]

More than 300 variations of cave mineral deposits have been identified.[2] The vast majority of speleothems are calcareous, composed of calcium carbonate (CaCO3) minerals (calciteoraragonite). Less commonly, speleothems are made of calcium sulfate (gypsumormirabilite) or opal.[2] Speleothems of pure calcium carbonate or calcium sulfate are translucent and colorless. The presence of iron oxideorcopper provides a reddish brown color. The presence of manganese oxide can create darker colors such as black or dark brown. Speleothems can also be brown due to the presence of mud and silt.[2]

Many factors impact the shape and color of speleothems, including the chemical composition of the rock and water, water seepage rate, water flow direction, cave temperature, cave humidity, air currents, aboveground climate, and aboveground plant cover. Weaker flows and short travel distances form narrower stalagmites, while heavier flow and a greater fall distance tend to form broader ones.

Formation processes

[edit]

Most cave chemistry involves calcium carbonate (CaCO3) containing rocks such as limestoneordolomite, composed of calciteoraragonite minerals. Carbonate minerals are more soluble in the presence of higher carbon dioxide (CO2) and lower temperatures. Calcareous speleothems form via carbonate dissolution reactions whereby rainwater reacts with soil CO2 to create weakly acidic water via the reaction:[3]

H2O + CO2H2CO3

As the acidic water travels through the calcium carbonate bedrock from the surface to the cave ceiling, it dissolves the bedrock via the reaction:

CaCO3 + H2CO3 → Ca2+ + 2 HCO3

When the solution reaches a cave, the lower pCO2 in the cave drives the precipitation of CaCO3 via the reaction:

Ca2+ + 2 HCO3 → CaCO3 + H2O + CO2

Over time, the accumulation of these precipitates form dripstones (stalagmites, stalactites), and flowstones, two of the major types of speleothems.

Climate proxies

[edit]

Speleothem transects can provide paleoclimate records similar to those from ice coresortree rings.[4] Slow geometrical growth and incorporation of radioactive elements enables speleothems to be accurately and precisely dated over much of the late Quaternarybyradiocarbon dating and uranium-thorium dating, as long as the cave is a closed system and the speleothem has not undergone recrystallization.[5] Oxygen (δ18O) and carbon (δ13C) stable isotopes are used to track variation in rainfall temperature, precipitation, and vegetation changes over the past ~500,000 years.[6][7] The Mg/Ca proxy has likewise been used as a moisture indicator, although its reliability as a palaeohygrometer can be affected by cave ventilation during dry seasons.[8] Variations in precipitation alter the width of speleothem rings: closed rings indicates little rainfall, wider spacing indicates heavier rainfall, and denser rings indicate higher moisture. Drip rate counting and trace element analysis of the water drops record short-term climate variations, such as El Niño–Southern Oscillation (ENSO) climate events.[9] Exceptionally, climate proxy data from the early Permian period have been retrieved from speleothems dated to 289 million years ago sourced from infilled caves exposed by quarrying at the Richards Spur locality in Oklahoma.[10]

Types and categories

[edit]
Types of speleothem:
(A) Stalactite (B) Soda straws (C) Stalagmites (D) Coned stalagmite (E) Stalagnate or column (F) Drapery (G) Drapery (H) Helictites (I) Moonmilk (J) Sinter pool, rimstone (K) Calcite crystals (L) Sinter terrace (M) Karst (N) Body of water (O) Shield (P) Cave clouds (Q) Cave pearls (R) Tower cones (S) Shelfstones (T) Baldacchino canopy (U) Bottlebrush stalactite (V) Conulite (W) Flowstone (X) Trays (Y) Calcite rafts (Z) Cave popcorn or coralloids (AA) Frostworks (AB) Flowstone (AC) Splattermite (AD) Speleoseismites (AE) Boxworks (AF) Oriented stalactite (AG) collapsed rubble

Speleothems take various forms, depending on whether the water drips, seeps, condenses, flows, or ponds. Many speleothems are named for their resemblance to man-made or natural objects. Types of speleothems include:[11]

Calthemites

[edit]

The usual definition of speleothem excludes secondary mineral deposits derived from concrete, lime, mortar, or other calcareous material (e.g. limestone and dolomite) outside the cave environment or in artificial caves (e.g. mines, tunnels), which can have similar shapes and forms as speleothems. Such secondary deposits in man-made structures are termed calthemites. Calthemites are often associated with concrete degradation, or due to leaching of lime, mortar, or other calcareous material.

[edit]

See also

[edit]

References

[edit]
  1. ^ White, W. B. (2019). "Speleothems". Encyclopedia of Caves: 1006–17. doi:10.1016/B978-0-12-814124-3.00117-5. ISBN 9780128141243.
  • ^ a b c White, William (2016). "Chemistry and karst". Acta Carsologica. 44 (3). doi:10.3986/ac.v44i3.1896. ISSN 0583-6050.
  • ^ J., Fairchild, Ian (2012). Speleothem science: from process to past environments. Wiley-Blackwell. ISBN 978-1-4051-9620-8. OCLC 813621194.{{cite book}}: CS1 maint: multiple names: authors list (link)
  • ^ Bradley, Raymond S. (2015). Paleoclimatology: Reconstructing Climates of the Quaternary. Academic Press. pp. 291–318. doi:10.1016/b978-0-12-386913-5.00008-9. ISBN 978-0-12-386913-5.
  • ^ Richards, David A.; Dorale, Jeffrey A. (2003). "Uranium-series Chronology and Environmental Applications of Speleothems". Reviews in Mineralogy and Geochemistry. 52 (1): 407–460. Bibcode:2003RvMG...52..407R. doi:10.2113/0520407. ISSN 1529-6466.
  • ^ Fairchild, Ian J.; Smith, Claire L.; Baker, Andy; Fuller, Lisa; Spötl, Christoph; Mattey, Dave; McDermott, Frank; E.I.M.F. (2006). "Modification and preservation of environmental signals in speleothems" (PDF). Earth-Science Reviews. ISOtopes in PALaeoenvironmental reconstruction (ISOPAL). 75 (1–4): 105–153. Bibcode:2006ESRv...75..105F. doi:10.1016/j.earscirev.2005.08.003.
  • ^ Hendy, C. H (1971). "The isotopic geochemistry of speleothems–I. The calculation of the effects of different modes of formation on the isotopic composition of speleothems and their applicability as palaeoclimatic indicators". Geochimica et Cosmochimica Acta. 35 (8): 801–824. Bibcode:1971GeCoA..35..801H. doi:10.1016/0016-7037(71)90127-X.
  • ^ Ronay, Elli R.; Breitenbach, Sebastian F. M.; Oster, Jessica L. (25 March 2019). "Sensitivity of speleothem records in the Indian Summer Monsoon region to dry season infiltration". Scientific Reports. 9 (1): 5091. Bibcode:2019NatSR...9.5091R. doi:10.1038/s41598-019-41630-2. ISSN 2045-2322. PMC 6434041. PMID 30911101.
  • ^ McDonald, Janece; Drysdale, Russell; Hill, David (2004). "The 2002–2003 El Niño recorded in Australian cave drip waters: Implications for reconstructing rainfall histories using stalagmites". Geophysical Research Letters. 31 (22): L22202. Bibcode:2004GeoRL..3122202M. doi:10.1029/2004gl020859. hdl:1959.13/29201. ISSN 1944-8007.
  • ^ Woodhead, Jon; Reisz, Robert; Fox, David; Drysdale, Russell; Hellstrom, John; Maas, Roland; Cheng, Hai; Edwards, R. Lawrence (2010-05-01). "Speleothem climate records from deep time? Exploring the potential with an example from the Permian". Geology. 38 (5): 455–458. Bibcode:2010Geo....38..455W. doi:10.1130/G30354.1. hdl:1959.13/931960. ISSN 0091-7613.
  • ^ Hill, C A, and Forti, P, (1997). Cave Minerals of the World, (2nd edition). [Huntsville, Alabama: National Speleological Society Inc.] pp. 217, 225
  • [edit]
    Retrieved from "https://en.wikipedia.org/w/index.php?title=Speleothem&oldid=1218872532"

    Categories: 
    Calcium minerals
    Dinaric Alps
    Dinaric karst formations
    Incremental dating
    Karst formations
    Karst
    Limestone
    Paleoclimatology
    Speleothems
    Hidden categories: 
    CS1 maint: multiple names: authors list
    Articles with short description
    Short description is different from Wikidata
    Commons category link is on Wikidata
     



    This page was last edited on 14 April 2024, at 10:32 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki