Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Definition  



1.1  Discrete time  





1.2  General case  





1.3  As adapted process  





1.4  Comments  







2 Examples  





3 Localization  





4 Types of stopping times  





5 Stopping rules in clinical trials  





6 See also  





7 References  





8 Further reading  














Stopping time






Deutsch
Español
فارسی
Français

Italiano
עברית
Nederlands
Polski
Русский
Українська

 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Example of a stopping time: a hitting timeofBrownian motion. The process starts at 0 and is stopped as soon as it hits 1.

Inprobability theory, in particular in the study of stochastic processes, a stopping time (also Markov time, Markov moment, optional stopping timeoroptional time[1]) is a specific type of “random time”: a random variable whose value is interpreted as the time at which a given stochastic process exhibits a certain behavior of interest. A stopping time is often defined by a stopping rule, a mechanism for deciding whether to continue or stop a process on the basis of the present position and past events, and which will almost always lead to a decision to stop at some finite time.

Stopping times occur in decision theory, and the optional stopping theorem is an important result in this context. Stopping times are also frequently applied in mathematical proofs to “tame the continuum of time”, as Chung put it in his book (1982).

Definition[edit]

Discrete time[edit]

Let be a random variable, which is defined on the filtered probability space with values in . Then is called a stopping time (with respect to the filtration ), if the following condition holds:

for all

Intuitively, this condition means that the "decision" of whether to stop at time must be based only on the information present at time , not on any future information.

General case[edit]

Let be a random variable, which is defined on the filtered probability space with values in . In most cases, . Then is called a stopping time (with respect to the filtration ), if the following condition holds:

for all

As adapted process[edit]

Let be a random variable, which is defined on the filtered probability space with values in . Then is called a stopping time if the stochastic process , defined by

isadapted to the filtration

Comments[edit]

Some authors explicitly exclude cases where can be , whereas other authors allow to take any value in the closure of .

Examples[edit]

To illustrate some examples of random times that are stopping rules and some that are not, consider a gambler playing roulette with a typical house edge, starting with $100 and betting $1 on red in each game:

To illustrate the more general definition of stopping time, consider Brownian motion, which is a stochastic process , where each is a random variable defined on the probability space . We define a filtration on this probability space by letting be the σ-algebra generated by all the sets of the form where and is a Borel set. Intuitively, an event E is in if and only if we can determine whether E is true or false just by observing the Brownian motion from time 0 to time t.

Hitting times like the second example above can be important examples of stopping times. While it is relatively straightforward to show that essentially all stopping times are hitting times,[2] it can be much more difficult to show that a certain hitting time is a stopping time. The latter types of results are known as the Début theorem.

Localization[edit]

Stopping times are frequently used to generalize certain properties of stochastic processes to situations in which the required property is satisfied in only a local sense. First, if X is a process and τ is a stopping time, then Xτ is used to denote the process X stopped at time τ.

Then, X is said to locally satisfy some property P if there exists a sequence of stopping times τn, which increases to infinity and for which the processes

satisfy property P. Common examples, with time index set I = [0, ∞), are as follows:

Local martingale process. A process X is a local martingale if it is càdlàg[clarification needed] and there exists a sequence of stopping times τn increasing to infinity, such that

is a martingale for each n.

Locally integrable process. A non-negative and increasing process X is locally integrable if there exists a sequence of stopping times τn increasing to infinity, such that

for each n.

Types of stopping times[edit]

Stopping times, with time index set I = [0,∞), are often divided into one of several types depending on whether it is possible to predict when they are about to occur.

A stopping time τispredictable if it is equal to the limit of an increasing sequence of stopping times τn satisfying τn < τ whenever τ > 0. The sequence τn is said to announce τ, and predictable stopping times are sometimes known as announceable. Examples of predictable stopping times are hitting times of continuous and adapted processes. If τ is the first time at which a continuous and real valued process X is equal to some value a, then it is announced by the sequence τn, where τn is the first time at which X is within a distance of 1/nofa.

Accessible stopping times are those that can be covered by a sequence of predictable times. That is, stopping time τ is accessible if, P(τ = τn for some n) = 1, where τn are predictable times.

A stopping time τistotally inaccessible if it can never be announced by an increasing sequence of stopping times. Equivalently, P(τ = σ < ∞) = 0 for every predictable time σ. Examples of totally inaccessible stopping times include the jump times of Poisson processes.

Every stopping time τ can be uniquely decomposed into an accessible and totally inaccessible time. That is, there exists a unique accessible stopping time σ and totally inaccessible time υ such that τ = σ whenever σ < ∞, τ = υ whenever υ < ∞, and τ = ∞ whenever σ = υ = ∞. Note that in the statement of this decomposition result, stopping times do not have to be almost surely finite, and can equal ∞.

Stopping rules in clinical trials[edit]

Clinical trials in medicine often perform interim analysis, in order to determine whether the trial has already met its endpoints. However, interim analysis create the risk of false-positive results, and therefore stopping boundaries are used to determine the number and timing of interim analysis (also known as alpha-spending, to denote the rate of false positives). At each of R interim tests, the trial is stopped if the likelihood is below a threshold p, which depends on the method used. See Sequential analysis.

See also[edit]

References[edit]

  1. ^ Kallenberg, Olav (2017). Random Measures, Theory and Applications. Probability Theory and Stochastic Modelling. Vol. 77. Switzerland: Springer. p. 347. doi:10.1007/978-3-319-41598-7. ISBN 978-3-319-41596-3.
  • ^ Fischer, Tom (2013). "On simple representations of stopping times and stopping time sigma-algebras". Statistics and Probability Letters. 83 (1): 345–349. arXiv:1112.1603. doi:10.1016/j.spl.2012.09.024.
  • Further reading[edit]


    Retrieved from "https://en.wikipedia.org/w/index.php?title=Stopping_time&oldid=1220799166"

    Categories: 
    Stochastic processes
    Optimal decisions
    Hidden categories: 
    Articles with short description
    Short description is different from Wikidata
    Wikipedia articles needing clarification from December 2022
    Wikipedia articles needing clarification from October 2023
     



    This page was last edited on 26 April 2024, at 00:07 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki