Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Definition  





2 Structural cut-off for neutral networks  





3 Structural disassortativity in scale-free networks  





4 Impact of the structural cut-off  



4.1  Generated networks  





4.2  Real networks  







5 See also  





6 References  














Structural cut-off







Add links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


The structural cut-off is a concept in network science which imposes a degree cut-off in the degree distribution of a finite size network due to structural limitations (such as the simple graph property). Networks with vertices with degree higher than the structural cut-off will display structural disassortativity.

Definition

[edit]

The structural cut-off is a maximum degree cut-off that arises from the structure of a finite size network.

Let be the number of edges between all vertices of degree and if, and twice the number if . Given that multiple edges between two vertices are not allowed, is bounded by the maximum number of edges between two degree classes .

Then, the ratio can be written

,

where is the average degree of the network, is the total number of vertices, is the probability a randomly chosen vertex will have degree , and is the probability that a randomly picked edge will connect on one side a vertex with degree with a vertex of degree .

To be in the physical region, must be satisfied.

The structural cut-off is then defined by . [1]

Structural cut-off for neutral networks

[edit]

The structural cut-off plays an important role in neutral (or uncorrelated) networks, which do not display any assortativity. The cut-off takes the form

which is finite in any real network.

Thus, if vertices of degree exist, it is physically impossible to attach enough edges between them to maintain the neutrality of the network.

Structural disassortativity in scale-free networks

[edit]

In a scale-free network the degree distribution is described by a power law with characteristic exponent , . In a finite scale free network, the maximum degree of any vertex (also called the natural cut-off), scales as

.

Then, networks with , which is the regime of most real networks, will have diverging faster than in a neutral network. This has the important implication that an otherwise neutral network may show disassortative degree correlations if . This disassortativity is not a result of any microscopic property of the network, but is purely due to the structural limitations of the network. In the analysis of networks, for a degree correlation to be meaningful, it must be checked that the correlations are not of structural origin.

Impact of the structural cut-off

[edit]

Generated networks

[edit]

A network generated randomly by a network generation algorithm is in general not free of structural disassortativity. If a neutral network is required, then structural disassortativity must be avoided. There are a few methods by which this can be done: [2]

  1. Allow multiple edges between the same two vertices. While this means that the network is no longer a simple network, it allows for sufficient edges to maintain neutrality.
  2. Simply remove all vertices with degree . This guarantees that no vertex is subject to structural limitations in its edges, and the network is free of structural disassortativity.

Real networks

[edit]

In some real networks, the same methods as for generated networks can also be used. In many cases, however, it may not make sense to consider multiple edges between two vertices, or such information is not available. The high degree vertices (hubs) may also be an important part of the network that cannot be removed without changing other fundamental properties.

To determine whether the assortativity or disassortativity of a network is of structural origin, the network can be compared with a degree-preserving randomized version of itself (without multiple edges). Then any assortativity measure of the randomized version will be a result of the structural cut-off. If the real network displays any additional assortativity or disassortativity beyond the structural disassortativity, then it is a meaningful property of the real network.

Other quantities that depend on the degree correlations, such as some definitions of the rich-club coefficient, will also be impacted by the structural cut-off. [3]

See also

[edit]

References

[edit]
  1. ^ Boguna, M.; Pastor-Satorras, R.; Vespignani, A. (1 March 2004). "Cut-offs and finite size effects in scale-free networks". The European Physical Journal B. 38 (2): 205–209. arXiv:cond-mat/0311650. Bibcode:2004EPJB...38..205B. doi:10.1140/epjb/e2004-00038-8.
  • ^ Catanzaro, Michele; Boguñá, Marián; Pastor-Satorras, Romualdo (February 2005). "Generation of uncorrelated random scale-free networks". Physical Review E. 71 (2). arXiv:cond-mat/0408110. Bibcode:2005PhRvE..71b7103C. doi:10.1103/PhysRevE.71.027103.
  • ^ Zhou, S; Mondragón, R J (28 June 2007). "Structural constraints in complex networks". New Journal of Physics. 9 (6): 173–173. arXiv:physics/0702096. Bibcode:2007NJPh....9..173Z. doi:10.1088/1367-2630/9/6/173.

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=Structural_cut-off&oldid=1223151781"

    Category: 
    Network theory
     



    This page was last edited on 10 May 2024, at 06:52 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki