Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  



























Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Overview  





2 Refinement schemes  



2.1  Approximating schemes  





2.2  Interpolating schemes  







3 Key developments  





4 See also  





5 References  





6 External links  














Subdivision surface






Deutsch
Español
فارسی
Français

Bahasa Indonesia

Português
Slovenčina

Українська

 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 




In other projects  



Wikimedia Commons
 


















From Wikipedia, the free encyclopedia
 


In the field of 3D computer graphics, a subdivision surface (commonly shortened to SubD surfaceorSubsurf) is a curved surface represented by the specification of a coarser polygon mesh and produced by a recursive algorithmic method. The curved surface, the underlying inner mesh,[1] can be calculated from the coarse mesh, known as the control cageorouter mesh, as the functional limit of an iterative process of subdividing each polygonal face into smaller faces that better approximate the final underlying curved surface. Less commonly, a simple algorithm is used to add geometry to a mesh by subdividing the faces into smaller ones without changing the overall shape or volume.

The opposite is reducing polygons or un-subdividing.[2]

Overview[edit]

Simple subdivision of a cube up to 3
Atessellation pipeline using a subdivision method

A subdivision surface algorithm is recursive in nature. The process starts with a base level polygonal mesh. A refinement scheme is then applied to this mesh. This process takes that mesh and subdivides it, creating new vertices and new faces. The positions of the new vertices in the mesh are computed based on the positions of nearby old vertices, edges, and/or faces. In many refinement schemes, the positions of old vertices are also altered (possibly based on the positions of new vertices).

This process produces a denser mesh than the original one, containing more polygonal faces (often by a factor of 4). This resulting mesh can be passed through the same refinement scheme again and again to produce more and more refined meshes. Each iteration is often called a subdivision level, starting at zero (before any refinement occurs).

The limit subdivision surface is the surface produced from this process being iteratively applied infinitely many times. In practical use however, this algorithm is only applied a limited, and fairly small (), number of times.

Mathematically, the neighborhood of an extraordinary vertex (non-4-valent node for quad refined meshes) of a subdivision surface is a spline with a parametrically singular point.[3]

Refinement schemes[edit]

Subdivision surface refinement schemes can be broadly classified into two categories: interpolating and approximating.

In general, approximating schemes have greater smoothness, but the user has less overall control of the outcome. This is analogous to spline surfaces and curves, where Bézier curves are required to interpolate certain control points, while B-Splines are not (and are more approximate).

Subdivision surface schemes can also be categorized by the type of polygon that they operate on: some function best for quadrilaterals (quads), while others primarily operate on triangles (tris).

Approximating schemes[edit]

Approximating means that the limit surfaces approximate the initial meshes, and that after subdivision the newly generated control points are not in the limit surfaces.[clarification needed] There are five approximating subdivision schemes:

Subdivision Schemes

Interpolating schemes[edit]

After subdivision, the control points of the original mesh and the newly generated control points are interpolated on the limit surface. The earliest work was so-called "butterfly scheme" by Dyn, Levin and Gregory (1990), who extended the four-point interpolatory subdivision scheme for curves to a subdivision scheme for surface. Zorin, Schröder and Sweldens (1996) noticed that the butterfly scheme cannot generate smooth surfaces for irregular triangle meshes and thus modified this scheme. Kobbelt (1996) further generalized the four-point interpolatory subdivision scheme for curves to the tensor product subdivision scheme for surfaces. In 1991, Nasri proposed a scheme for interpolating Doo-Sabin;[11] while in 1993 Halstead, Kass, and DeRose proposed one for Catmull-Clark.[12]

Key developments[edit]

See also[edit]

References[edit]

  1. ^ "Subdivision Surfaces". nevercenter.com. Retrieved 19 January 2021.
  • ^ Blender: Reduce Polygons – Simply Explained
  • ^ J. Peters and U. Reif: Subdivision Surfaces, Springer series Geometry and Computing monograph 3, 2008, doi
  • ^ J. Peters and U. Reif: Analysis of generalized B-spline subdivision algorithms, SIAM J of Numer. Anal. 32 (2) 1998, p.728-748
  • ^ "Chaikin Curves in Processing".
  • ^ K. Karciauskas and J. Peters: Point-augmented biquadratic C1 subdivision surfaces, Graphical Models, 77, p.18-26 [1][permanent dead link]
  • ^ Joy, Ken (1996–2000). "DOO-SABIN SURFACES" (PDF). On-Line Geometric Modeling Notes – via UC Davis.
  • ^ J. Peters and U. Reif: The simplest subdivision scheme for smoothing polyhedra, ACM Transactions on Graphics 16(4) (October 1997) p.420-431, doi
  • ^ A. Habib and J. Warren: Edge and vertex insertion for a class of C1 subdivision surfaces, Computer Aided Geometric Design 16(4) (May 1999) p.223-247, doi
  • ^ L. Kobbelt: √3-subdivision, 27th annual conference on Computer graphics and interactive techniques, doi
  • ^ Nasri, A. H. Surface interpolation on irregular networks with normal conditions. Computer Aided Geometric Design 8 (1991), 89–96.
  • ^ Halstead, M., Kass, M., and DeRose, T. Efficient, Fair Interpolation Using Catmull-Clark Surfaces. In Computer Graphics Proceedings (1993), Annual Conference Series, ACM Siggraph
  • ^ Zorin, Denis; Schröder, Peter; Sweldens, Wim (1996). "Interpolating Subdivision for Meshes with Arbitrary Topology" (PDF). Department of Computer Science, California Institute of Technology, Pasadena, CA 91125.
  • ^ Ulrich Reif. 1995. A unified approach to subdivision algorithms near extraordinary vertices. Computer Aided Geometric Design. 12(2)153–174
  • ^ Jos Stam, "Exact Evaluation of Catmull-Clark Subdivision Surfaces at Arbitrary Parameter Values", Proceedings of SIGGRAPH'98. In Computer Graphics Proceedings, ACM SIGGRAPH, 1998, 395–404
  • External links[edit]


    Retrieved from "https://en.wikipedia.org/w/index.php?title=Subdivision_surface&oldid=1214578483"

    Categories: 
    3D computer graphics
    Multivariate interpolation
    Hidden categories: 
    All articles with dead external links
    Articles with dead external links from February 2024
    Articles with permanently dead external links
    Articles with short description
    Short description is different from Wikidata
    Use dmy dates from May 2022
    Wikipedia articles needing clarification from January 2021
    Pages using multiple image with auto scaled images
     



    This page was last edited on 19 March 2024, at 20:30 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki