Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Overview  





2 Temperature gradient  





3 See also  





4 References  





5 External links  














Sublimatory






Català
فارسی
Français
 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 




In other projects  



Wikimedia Commons
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Simple sublimation apparatus. Water usually cold, is circulated in cold finger to allow the desired compound to be deposited.
1 Cooling water in 2 Cooling water out 3 Vacuum/gas line 4 Sublimation chamber 5 Sublimed compound 6 Crude material 7 External heating

Asublimatory[1][2]orsublimation apparatus is equipment, commonly laboratory glassware, for purification of compounds by selective sublimation. In principle, the operation resembles purification by distillation, except that the products do not pass through a liquid phase.

Overview

[edit]
Camphor being purified on a sublimation apparatus. Note the white purified camphor on the cold finger, and the dark-brown crude product.
Dark green crystals of nickelocene, freshly sublimed on the cold finger of the sublimation apparatus.

A typical sublimation apparatus separates a mix of appropriate solid materials in a vessel in which it applies heat under a controllable atmosphere (air, vacuum or inert gas). If the material is not at first solid, then it may freeze under reduced pressure. Conditions are so chosen that the solid volatilizes and condenses as a purified compound on a cooled surface, leaving the non-volatile residual impurities or solid products behind.

The form of the cooled surface often is a so-called cold finger which for very low-temperature sublimation may actually be cryogenically cooled. If the operation is a batch process, then the sublimed material can be collected from the cooled surface once heating ceases and the vacuum is released. Although this may be quite convenient for small quantities, adapting sublimation processes to large volume is generally not practical with the apparatus becoming extremely large and generally needing to be disassembled to recover products and remove residue.

Among the advantages of applying the principle to certain materials are the comparatively low working temperatures, reduced exposure to gases such as oxygen that might harm certain products, and the ease with which it can be performed on extremely small quantities.[3] The same apparatus may also be used for conventional distillation of extremely small quantities due to the very small volume and surface area between evaporating and condensing regions, although this is generally only useful if the cold finger can be cold enough to solidify the condensate.

Temperature gradient

[edit]

More sophisticated variants of sublimation apparatus include those that apply a temperature gradient so as to allow for controlled recrystallization of different fractions along the cold surface. Thermodynamic processes follow a statistical distribution, and suitably designed apparatus exploit this principle with a gradient that will yield different purities in particular temperature zones along the collection surface. Such techniques are especially helpful when the requirement is to refine or separate multiple products or impurities from the same mix of raw materials. It is necessary in particular when some of the required products have similar sublimation pointsorpressure curves.[3]

See also

[edit]

References

[edit]
  1. ^ Levey, Martin (1960). "The Earliest Stages in the Evolution of the Still". Isis. 51 (1): 31–34. ISSN 0021-1753.
  • ^ "Webster's 1913". www.websters1913.com. Retrieved 2023-06-26.
  • ^ a b James R. Couper (2012). Chemical Process Equipment: Selection and Design. Butterworth-Heinemann. pp. 729–. ISBN 978-0-12-396959-0.
  • [edit]
    Retrieved from "https://en.wikipedia.org/w/index.php?title=Sublimatory&oldid=1178666389"

    Categories: 
    Alchemical processes
    Laboratory glassware
    Separation processes
    Chemical equipment
    Phase transitions
    Hidden category: 
    Commons category link from Wikidata
     



    This page was last edited on 5 October 2023, at 03:12 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki