Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Propositional logic  



1.1  Definition  





1.2  Tautologies  







2 First-order logic  





3 Algebra  





4 See also  





5 Notes  





6 Citations  





7 References  





8 External links  














Substitution (logic)






Deutsch

Português
 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 

(Redirected from Substitution (algebra))

Asubstitution is a syntactic transformation on formal expressions. To apply a substitution to an expression means to consistently replace its variable, or placeholder, symbols with other expressions.

The resulting expression is called a substitution instance, or instance for short, of the original expression.

Propositional logic[edit]

Definition[edit]

Where ψ and φ represent formulasofpropositional logic, ψ is a substitution instanceofφ if and only if ψ may be obtained from φ by substituting formulas for propositional variablesinφ, replacing each occurrence of the same variable by an occurrence of the same formula. For example:

(R → S) & (T → S)

is a substitution instance of:

P &Q

and

(A ↔ A) ↔ (A ↔ A)

is a substitution instance of:

(A ↔ A)

In some deduction systems for propositional logic, a new expression (aproposition) may be entered on a line of a derivation if it is a substitution instance of a previous line of the derivation (Hunter 1971, p. 118). This is how new lines are introduced in some axiomatic systems. In systems that use rules of transformation, a rule may include the use of a substitution instance for the purpose of introducing certain variables into a derivation.

Tautologies[edit]

A propositional formula is a tautology if it is true under every valuation (orinterpretation) of its predicate symbols. If Φ is a tautology, and Θ is a substitution instance of Φ, then Θ is again a tautology. This fact implies the soundness of the deduction rule described in the previous section.

First-order logic[edit]

Infirst-order logic, a substitution is a total mapping σ: VT from variablestoterms; many,[1]: 73 [2]: 445  but not all[3]: 250  authors additionally require σ(x) = x for all but finitely many variables x. The notation { x1 ↦ t1, …, xk ↦ tk }[note 1] refers to a substitution mapping each variable xi to the corresponding term ti, for i=1,…,k, and every other variable to itself; the xi must be pairwise distinct. Applying that substitution to a term t is written in postfix notationast { x1 ↦ t1, ..., xk ↦ tk }; it means to (simultaneously) replace every occurrence of each xiintbyti.[note 2] The result of applying a substitution σ to a term t is called an instance of that term t. For example, applying the substitution { x ↦ z, z ↦ h(a,y) } to the term

f( z , a, g( x ), y)   yields
f( h(a,y) , a, g( z ), y) .

The domain dom(σ) of a substitution σ is commonly defined as the set of variables actually replaced, i.e. dom(σ) = { xV | x }. A substitution is called a ground substitution if it maps all variables of its domain to ground, i.e. variable-free, terms. The substitution instance of a ground substitution is a ground term if all of t's variables are in σ's domain, i.e. if vars(t) ⊆ dom(σ). A substitution σ is called a linear substitution if is a linear term for some (and hence every) linear term t containing precisely the variables of σ's domain, i.e. with vars(t) = dom(σ). A substitution σ is called a flat substitution if is a variable for every variable x. A substitution σ is called a renaming substitution if it is a permutation on the set of all variables. Like every permutation, a renaming substitution σ always has an inverse substitution σ−1, such that tσσ−1 = t = −1σ for every term t. However, it is not possible to define an inverse for an arbitrary substitution.

For example, { x ↦ 2, y ↦ 3+4 } is a ground substitution, { x ↦ x1, y ↦ y2+4 } is non-ground and non-flat, but linear, { x ↦ y2, y ↦ y2+4 } is non-linear and non-flat, { x ↦ y2, y ↦ y2 } is flat, but non-linear, { x ↦ x1, y ↦ y2 } is both linear and flat, but not a renaming, since it maps both y and y2toy2; each of these substitutions has the set {x,y} as its domain. An example for a renaming substitution is { x ↦ x1, x1 ↦ y, y ↦ y2, y2 ↦ x }, it has the inverse { x ↦ y2, y2 ↦ y, y ↦ x1, x1 ↦ x }. The flat substitution { x ↦ z, y ↦ z } cannot have an inverse, since e.g. (x+y) { x ↦ z, y ↦ z } = z+z, and the latter term cannot be transformed back to x+y, as the information about the origin a z stems from is lost. The ground substitution { x ↦ 2 } cannot have an inverse due to a similar loss of origin information e.g. in (x+2) { x ↦ 2 } = 2+2, even if replacing constants by variables was allowed by some fictitious kind of "generalized substitutions".

Two substitutions are considered equal if they map each variable to syntactically equal result terms, formally: σ = τif = for each variable xV. The composition of two substitutions σ = { x1 ↦ t1, …, xk ↦ tk } and τ = { y1 ↦ u1, …, yl ↦ ul } is obtained by removing from the substitution { x1 ↦ t1τ, …, xk ↦ tkτ, y1 ↦ u1, …, yl ↦ ul } those pairs yi ↦ ui for which yi ∈ { x1, …, xk }. The composition of σ and τ is denoted by στ. Composition is an associative operation, and is compatible with substitution application, i.e. (ρσ)τ = ρ(στ), and ()τ = t(στ), respectively, for every substitutions ρ, σ, τ, and every term t. The identity substitution, which maps every variable to itself, is the neutral element of substitution composition. A substitution σ is called idempotentifσσ = σ, and hence tσσ = for every term t. When xiti for all i, the substitution { x1 ↦ t1, …, xk ↦ tk } is idempotent if and only if none of the variables xi occurs in any tj. Substitution composition is not commutative, that is, στ may be different from τσ, even if σ and τ are idempotent.[1]: 73–74 [2]: 445–446 

For example, { x ↦ 2, y ↦ 3+4 } is equal to { y ↦ 3+4, x ↦ 2 }, but different from { x ↦ 2, y ↦ 7 }. The substitution { x ↦ y+y } is idempotent, e.g. ((x+y) {xy+y}) {xy+y} = ((y+y)+y) {xy+y} = (y+y)+y, while the substitution { x ↦ x+y } is non-idempotent, e.g. ((x+y) {xx+y}) {xx+y} = ((x+y)+y) {xx+y} = ((x+y)+y)+y. An example for non-commuting substitutions is { x ↦ y } { y ↦ z } = { x ↦ z, y ↦ z }, but { y ↦ z} { x ↦ y} = { x ↦ y, y ↦ z }.

Algebra[edit]

Substitution is a basic operation in algebra, in particular in computer algebra.[4][5]

A common case of substitution involves polynomials, where substitution of a numerical value (or another expression) for the indeterminate of a univariate polynomial amounts to evaluating the polynomial at that value. Indeed, this operation occurs so frequently that the notation for polynomials is often adapted to it; instead of designating a polynomial by a name like P, as one would do for other mathematical objects, one could define

so that substitution for X can be designated by replacement inside "P(X)", say

or

Substitution can also be applied to other kinds of formal objects built from symbols, for instance elements of free groups. In order for substitution to be defined, one needs an algebraic structure with an appropriate universal property, that asserts the existence of unique homomorphisms that send indeterminates to specific values; the substitution then amounts to finding the image of an element under such a homomorphism.

Substitution is related to, but not identical to, function composition; it is closely related to β-reduction in lambda calculus. In contrast to these notions, however, the accent in algebra is on the preservation of algebraic structure by the substitution operation, the fact that substitution gives a homomorphism for the structure at hand (in the case of polynomials, the ring structure).[citation needed]

See also[edit]

Notes[edit]

  1. ^ Some authors use [ t1/x1, …, tk/xk ] to denote that substitution, e.g. M. Wirsing (1990). Jan van Leeuwen (ed.). Algebraic Specification. Handbook of Theoretical Computer Science. Vol. B. Elsevier. pp. 675–788., here: p. 682.
  • ^ From a term algebra point of view, the set T of terms is the free term algebra over the set V of variables, hence for each substitution mapping σ: VT there is a unique homomorphism σ: TT that agrees with σ on VT; the above-defined application of σ to a term t is then viewed as applying the function σ to the argument t.
  • Citations[edit]

    1. ^ a b David A. Duffy (1991). Principles of Automated Theorem Proving. Wiley.
  • ^ a b Franz Baader, Wayne Snyder (2001). Alan Robinson and Andrei Voronkov (ed.). Unification Theory (PDF). Elsevier. pp. 439–526. Archived from the original (PDF) on 2015-06-08. Retrieved 2014-09-24.
  • ^ N. Dershowitz; J.-P. Jouannaud (1990). "Rewrite Systems". In Jan van Leeuwen (ed.). Formal Models and Semantics. Handbook of Theoretical Computer Science. Vol. B. Elsevier. pp. 243–320.
  • ^ Margret H. Hoft; Hartmut F.W. Hoft (6 November 2002). Computing with Mathematica. Elsevier. ISBN 978-0-08-048855-4.
  • ^ Andre Heck (6 December 2012). Introduction to Maple. Springer Science & Business Media. ISBN 978-1-4684-0484-5. substitution.
  • References[edit]

    External links[edit]


    Retrieved from "https://en.wikipedia.org/w/index.php?title=Substitution_(logic)&oldid=1227430785#Algebra"

    Categories: 
    Substitution (logic)
    Propositional calculus
    Concepts in logic
    Logical truth
    Automated theorem proving
    Logic programming
    Hidden categories: 
    Articles with short description
    Short description is different from Wikidata
    All articles with unsourced statements
    Articles with unsourced statements from March 2023
     



    This page was last edited on 5 June 2024, at 17:43 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki