Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Overview  





2 Nomenclature  





3 Method  



3.1  Source Sound  





3.2  Subtractive Synthesis  







4 See also  





5 References  





6 External links  














Subtractive synthesis






Català
Dansk
Deutsch
Español
Euskara
Français
Italiano
Nederlands

Polski
Português
Русский
Suomi

 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 




In other projects  



Wikimedia Commons
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Subtractive synthesis is a method of sound synthesis in which overtones of an audio signal are attenuated by a filter to alter the timbre of the sound.

Overview

[edit]

Subtractive synthesis relies on source sounds that have overtones, such as non-sinusoidal waveforms like square and triangle waves, or white and pink noise. These overtones are then modulated to alter the source sound. This modulation can happen in a wide variety of ways, such as voltage-controlledorlow-pass filters.[1]

The technology developed in experimental electronic studios which were primarily focused on telecommunications and military applications.[2] Early examples include Bell Labs' Voder (1937–8).[3] Composers began applying the concept of subtractive synthesis beyond the recording studio in concert music. Henri Pousseur's Scambi (1957) subjects white noise to filters and uses the resulting sounds to create montages. Mikrophonie I (1964) by Karlheinz Stockhausen uses a tam-tam and a microphone as the primary sound source which is then filtered extensively by two sound projectionists.[4]

Until the advent of digital synthesizers, subtractive synthesis was the nearly universal electronic method of sound production.[5] Its popularity was due largely to its relative simplicity.[6] Subtractive synthesis was so prevalent in analog synthesizers that it is sometimes called "analog synthesis".[7] It was the method of sound production in instruments like the Trautonium (1930), Novachord (1939), Buchla 100 (1960s), EMS VCS 3 (1969), Minimoog (1970), ARP 2600 (1971), Oberheim OB-1 (1978), and Korg MS-20 (1978).[1]: 71–4  Programmable sound generators (PSG) relied heavily on subtractive synthesis. PSGs were used in many personal computers, arcade games, and home consoles such as the Atari ST, Mattel's Intellivision, Sega'sMaster System, and the ZX Spectrum.[7]

Nomenclature

[edit]

Subtractive synthesis has become a catchall for a method where source sounds are modulated, and it is sometimes applied inappropriately.[8][9]

Method

[edit]

The following is an example of subtractive synthesis as it might occur in an electronic instrument to emulate the sound of a plucked string. It was created with a personal computer program designed to emulate an analogue subtractive synthesizer.

Source Sound

[edit]

First, an electronic oscillator produces a relatively complex waveform with audible overtones. Only one oscillator is necessary, and the number can vary widely. In this case, two oscillators are used:

Closeup view of waveform in the audio sample.
Closeup oscilloscope of Waveform #1.
Closeup oscilloscope of Waveform #2.
Closeup oscilloscope of Waveform #2.

Pulse-width modulation is applied to both waveforms to create a more complex tone with vibrato:

Closeup of pulse-width modulated Waveform 1.
Closeup of pulse-width modulated Waveform 1.
Closeup of pulse-width modulated Waveform 2.
Closeup of pulse-width modulated Waveform 2.

The pulse-width modulated sounds are now combined at equal volume. Combining them at different volumes would create different timbres. The result is a 2-second source sound, which is ready for subtractive synthesis.

Combined waveforms and pulse-width modulation.
Combined waveforms and pulse-width modulation.

Subtractive Synthesis

[edit]

The combined wave is passed through a voltage-controlled amplifier connected to an envelope generator. The parameters of the sound's envelope (attack, decay, sustain and release) are manipulated to change its sound. In this case, the decay is vastly increased, sustain is reduced, and the release shortened. The resulting sound is audible for half as long as the source sound:

Enveloped waveform.
Enveloped waveform.

With its new envelope, the sound is run through a low-pass filter, which reduces the volume of higher overtones:

Low-pass filtered waveform.
Closeup of low-pass filtered waveform.

To better emulate the sound of a plucked string, the filter's cutoff frequency is lowered.

Final waveform
Closeup of final waveform

See also

[edit]

References

[edit]
  1. ^ a b Réveillac, Jean-Michel. Synthesizers and Subtractive Synthesis 1. John Wiley & Sons, 2024.
  • ^ Iverson, Jennifer. “Fraught Adjacencies: The Politics of German Electronic Music.” Acta Musicologica, vol. 92, no. 1, 2020. 94f.
  • ^ Dudley, Homer, Richard R. Riesz, and Stanley S. A. Watkins. “A Synthetic Speaker.” Journal of the Franklin Institute 227, no. 6 (1939): 739–64.
  • ^ Manning, Peter. Electronic and Computer Music, Oxford University Press, Incorporated, 2004. 70, 158.
  • ^ Bates, Jon. "The History of the World: Part One, Subtractive Synthesis". Amiga Format, no. 4, 1989 Nov 01, 1989/11/01/, pp. 98.
  • ^ Lane, John, et al. “Modeling Analog Synthesis with DSPs.” Computer Music Journal, vol. 21, no. 4, 1997. 23.
  • ^ a b Collins, Karen. Game Sound: An Introduction to the History, Theory, and Practice of Video Game Music and Sound Design. MIT Press. p. 10. ISBN 9780262033787.
  • ^ de Poli, Giovanni. “A Tutorial on Digital Sound Synthesis Techniques.” Computer Music Journal, vol. 7, no. 4, 1983. 14.
  • ^ Stefanakis, Nikolaos, et al. “Sound Synthesis Based on Ordinary Differential Equations.” Computer Music Journal, vol. 39, no. 3, 2015. 48.
  • [edit]
    Retrieved from "https://en.wikipedia.org/w/index.php?title=Subtractive_synthesis&oldid=1234297236"

    Category: 
    Sound synthesis types
    Hidden categories: 
    Articles with short description
    Short description matches Wikidata
    Articles with hAudio microformats
    Pages displaying short descriptions of redirect targets via Module:Annotated link
    Pages displaying wikidata descriptions as a fallback via Module:Annotated link
     



    This page was last edited on 13 July 2024, at 16:29 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki