Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Theory  





2 Calculations  





3 Artificial use  





4 See also  





5 References  














Suction cup






العربية
Català
Čeština
Deutsch
Eesti
Español
Euskara
Français
Italiano
Latina
Magyar
Nederlands

Plattdüütsch
Русский
Simple English
Suomi
Svenska
Українська

 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 




In other projects  



Wikimedia Commons
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


A transparent suction cup
A figure showing that the pressure exerted outside the suction cup exceeds the pressure inside. This pressure difference holds the suction cup in contact with the surface.
The pressure on a suction cup as exerted by collisions of gas molecules holds the suction cup in contact with the surface.
One cup suction lifter.

Asuction cup, also known as a sucker, is a device or object that uses the negative fluid pressure of air or water to adhere to nonporous surfaces, creating a partial vacuum.[1]

Suction cups occur in nature on the bodies of some animals such as octopuses and squid, and have been reproduced artificially for numerous purposes.[2]

Theory[edit]

The working face of the suction cup is made of elastic, flexible material and has a curved surface.[3] When the center of the suction cup is pressed against a flat, non-porous surface, the volume of the space between the suction cup and the flat surface is reduced, which causes the air or water between the cup and the surface to be expelled past the rim of the circular cup. The cavity which develops between the cup and the flat surface has little to no air or water in it because most of the fluid has already been forced out of the inside of the cup, causing a lack of pressure. The pressure difference between the atmosphere on the outside of the cup and the low-pressure cavity on the inside of the cup keeps the cup adhered to the surface.

Suction cup pressed on a window

When the user ceases to apply physical pressure to the outside of the cup, the elastic substance of which the cup is made tends to resume its original, curved shape. The length of time for which the suction effect can be maintained depends mainly on how long it takes for air or water to leak back into the cavity between the cup and the surface, equalizing the pressure with the surrounding atmosphere. This depends on the porosity and flatness of the surface and the properties of the cup's rim. A small amount of mineral oilorvegetable oil is often employed to help maintain the seal.

Calculations[edit]

The force required to detach an ideal suction cup by pulling it directly away from the surface is given by the formula:

where:

F is the force,
A is the area of the surface covered by the cup,
P is the pressure outside the cup (typically atmospheric pressure)

This is derived from the definition of pressure, which is:

For example, a suction cup of radius 2.0 cm has an area of (0.020 m)2 = 0.0013 square meters. Using the force formula (F = AP), the result is F = (0.0013 m2)(100,000 Pa) = about 130 newtons.

The above formula relies on several assumptions:

  1. The outer diameter of the cup does not change when the cup is pulled.
  2. No air leaks into the gap between the cup and the surface.
  3. The pulling force is applied perpendicular to the surface so that the cup does not slide sideways or peel off.
  4. The suction cup contains a perfect vacuum; in reality, a small partial pressure will remain on the interior, and P is the differential pressure.

Artificial use[edit]

SatNav devices often ship with suction cup holders for mounting on windscreens.
GoPro camera attached to car with suction cup

Artificial suction cups are believed to have first been used in the third century, B.C., and were made out of gourds. They were used to suction "bad blood" from internal organs to the surface. Hippocrates is believed to have invented this procedure.[citation needed]

The first modern suction cup patents were issued by the United States Patent and Trademark Office during the 1860s. TC Roche was awarded U.S. Patent No. 52,748 in 1866 for a "Photographic Developer Dipping Stick"; the patent discloses a primitive suction cup means for handling photographic plates during developing procedures. In 1868, Orwell Needham patented a more refined suction cup design, U.S. Patent No. 82,629, calling his invention an "Atmospheric Knob" purposed for general use as a handle and drawer opening means.[4][5]

Suction cups have a number of commercial and industrial applications:

On May 25, 1981, Dan Goodwin, a.k.a. SpiderDan, scaled Sears Tower, the former world's tallest building, with a pair of suction cups. He went on to scale the Renaissance Center in Dallas, the Bonaventure Hotel in Los Angeles, the World Trade Center in New York City, Parque Central Tower in Caracas, the Nippon TV station in Tokyo, and the Millennium Tower in San Francisco.[10][11][12]

See also[edit]

References[edit]

  1. ^ ""Suction Cup" m-w.com". Merriam Webster: An Encyclopædia Britannica Company. Retrieved 2012-06-01.
  • ^ "Well-Armed Design: 8 Octopus-Inspired Technologies". livescience.com. 29 September 2014. Retrieved July 30, 2015.
  • ^ ""Suction Cup" google.com". Google Patents. Retrieved 2012-06-01.
  • ^ "United States Patent 52,748".
  • ^ "United States Patent 82,629".
  • ^ "First inland vacuum-based mooring system installed on St. Lawrence Seaway locks". Professional Mariner. September 2015. Retrieved 11 March 2017.
  • ^ Hands Free MooringonYouTube
  • ^ "Suction Cup Museum History Page". 2006-04-24. Archived from the original on April 24, 2006. Retrieved 2012-01-27.{{cite web}}: CS1 maint: unfit URL (link)
  • ^ "Man climbs skyscraper with suction cups". BBC News. 2010-09-07. Retrieved 2012-01-27.
  • ^ Spider-man aka SpiderDan Goodwin scales the Sears Tower V2 - YouTube
  • ^ Spider-man aka SpiderDan Goodwin the Skyscraperman scales the Millennium Tower in San Francisco - YouTube
  • ^ "αποφραξεις τιμες (Greece)". Ventouza. 25 February 2018.

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=Suction_cup&oldid=1227950440"

    Categories: 
    Tools
    Vacuum
    Joining
    Hidden categories: 
    CS1 maint: unfit URL
    Articles with short description
    Short description is different from Wikidata
    All articles with unsourced statements
    Articles with unsourced statements from August 2015
    Commons category link is on Wikidata
    Articles with GND identifiers
     



    This page was last edited on 8 June 2024, at 17:28 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki