Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 One-dimensional example  





2 In four spacetime dimensions  





3 See also  





4 References  














Superpotential






Español
Italiano
 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Intheoretical physics, the superpotential is a function in supersymmetric quantum mechanics. Given a superpotential, two "partner potentials" are derived that can each serve as a potential in the Schrödinger equation. The partner potentials have the same spectrum, apart from a possible eigenvalue of zero, meaning that the physical systems represented by the two potentials have the same characteristic energies, apart from a possible zero-energy ground state.

One-dimensional example[edit]

Consider a one-dimensional, non-relativistic particle with a two state internal degree of freedom called "spin". (This is not quite the usual notion of spin encountered in nonrelativistic quantum mechanics, because "real" spin applies only to particles in three-dimensional space.) Let b and its Hermitian adjoint b signify operators which transform a "spin up" particle into a "spin down" particle and vice versa, respectively. Furthermore, take b and b to be normalized such that the anticommutator {b,b} equals 1, and take that b2 equals 0. Let p represent the momentum of the particle and x represent its position with [x,p]=i, where we use natural units so that . Let W (the superpotential) represent an arbitrary differentiable functionofx and define the supersymmetric operators Q1 and Q2as

The operators Q1 and Q2 are self-adjoint. Let the Hamiltonianbe

where W' signifies the derivative of W. Also note that {Q1,Q2}=0. Under these circumstances, the above system is a toy modelofN=2 supersymmetry. The spin down and spin up states are often referred to as the "bosonic" and "fermionic" states, respectively, in an analogy to quantum field theory. With these definitions, Q1 and Q2 map "bosonic" states into "fermionic" states and vice versa. Restricting to the bosonic or fermionic sectors gives two partner potentials determined by

In four spacetime dimensions[edit]

Insupersymmetric quantum field theories with four spacetime dimensions, which might have some connection to nature, it turns out that scalar fields arise as the lowest component of a chiral superfield, which tends to automatically be complex valued. We may identify the complex conjugate of a chiral superfield as an anti-chiral superfield. There are two possible ways to obtain an action from a set of superfields:

or

The second option tells us that an arbitrary holomorphic function of a set of chiral superfields can show up as a term in a Lagrangian which is invariant under supersymmetry. In this context, holomorphic means that the function can only depend on the chiral superfields, not their complex conjugates. We may call such a function W, the superpotential. The fact that W is holomorphic in the chiral superfields helps explain why supersymmetric theories are relatively tractable, as it allows one to use powerful mathematical tools from complex analysis. Indeed, it is known that W receives no perturbative corrections, a result referred to as the perturbative non-renormalization theorem. Note that non-perturbative processes may correct this, for example through contributions to the beta functions due to instantons.

See also[edit]

References[edit]


Retrieved from "https://en.wikipedia.org/w/index.php?title=Superpotential&oldid=1160187600"

Categories: 
Supersymmetry
Supersymmetric quantum field theory
Potentials
Hidden categories: 
Articles lacking in-text citations from February 2021
All articles lacking in-text citations
 



This page was last edited on 14 June 2023, at 22:55 (UTC).

Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



Privacy policy

About Wikipedia

Disclaimers

Contact Wikipedia

Code of Conduct

Developers

Statistics

Cookie statement

Mobile view



Wikimedia Foundation
Powered by MediaWiki