Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Definition  





2 Examples  





3 Symmetric part of a tensor  





4 Symmetric product  





5 Decomposition  





6 See also  





7 Notes  





8 References  





9 External links  














Symmetric tensor






Deutsch
Español
Français
Nederlands

Português
Русский
Українська
 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Inmathematics, a symmetric tensor is a tensor that is invariant under a permutation of its vector arguments:

for every permutation σ of the symbols {1, 2, ..., r}. Alternatively, a symmetric tensor of order r represented in coordinates as a quantity with r indices satisfies

The space of symmetric tensors of order r on a finite-dimensional vector space Visnaturally isomorphic to the dual of the space of homogeneous polynomials of degree ronV. Over fieldsofcharacteristic zero, the graded vector space of all symmetric tensors can be naturally identified with the symmetric algebraonV. A related concept is that of the antisymmetric tensororalternating form. Symmetric tensors occur widely in engineering, physics and mathematics.

Definition[edit]

Let V be a vector space and

a tensor of order k. Then T is a symmetric tensor if

for the braiding maps associated to every permutation σ on the symbols {1,2,...,k} (or equivalently for every transposition on these symbols).

Given a basis {ei} of V, any symmetric tensor T of rank k can be written as

for some unique list of coefficients (the components of the tensor in the basis) that are symmetric on the indices. That is to say

for every permutation σ.

The space of all symmetric tensors of order k defined on V is often denoted by Sk(V) or Symk(V). It is itself a vector space, and if V has dimension N then the dimension of Symk(V) is the binomial coefficient

We then construct Sym(V) as the direct sum of Symk(V) for k = 0,1,2,...

Examples[edit]

There are many examples of symmetric tensors. Some include, the metric tensor, , the Einstein tensor, and the Ricci tensor, .

Many material properties and fields used in physics and engineering can be represented as symmetric tensor fields; for example: stress, strain, and anisotropic conductivity. Also, in diffusion MRI one often uses symmetric tensors to describe diffusion in the brain or other parts of the body.

Ellipsoids are examples of algebraic varieties; and so, for general rank, symmetric tensors, in the guise of homogeneous polynomials, are used to define projective varieties, and are often studied as such.

Given a Riemannian manifold equipped with its Levi-Civita connection , the covariant curvature tensor is a symmetric order 2 tensor over the vector space of differential 2-forms. This corresponds to the fact that, viewing , we have the symmetry between the first and second pairs of arguments in addition to antisymmetry within each pair: .[1]

Symmetric part of a tensor[edit]

Suppose is a vector space over a field of characteristic 0. If TVk is a tensor of order , then the symmetric part of is the symmetric tensor defined by

the summation extending over the symmetric grouponk symbols. In terms of a basis, and employing the Einstein summation convention, if

then

The components of the tensor appearing on the right are often denoted by

with parentheses () around the indices being symmetrized. Square brackets [] are used to indicate anti-symmetrization.

Symmetric product[edit]

IfT is a simple tensor, given as a pure tensor product

then the symmetric part of T is the symmetric product of the factors:

In general we can turn Sym(V) into an algebra by defining the commutative and associative product ⊙.[2] Given two tensors T1 ∈ Symk1(V) and T2 ∈ Symk2(V), we use the symmetrization operator to define:

It can be verified (as is done by Kostrikin and Manin[2]) that the resulting product is in fact commutative and associative. In some cases the operator is omitted: T1T2 = T1T2.

In some cases an exponential notation is used:

Where v is a vector. Again, in some cases the ⊙ is left out:

Decomposition[edit]

In analogy with the theory of symmetric matrices, a (real) symmetric tensor of order 2 can be "diagonalized". More precisely, for any tensor T ∈ Sym2(V), there is an integer r, non-zero unit vectors v1,...,vr ∈ V and weights λ1,...,λr such that

The minimum number r for which such a decomposition is possible is the (symmetric) rank of T. The vectors appearing in this minimal expression are the principal axes of the tensor, and generally have an important physical meaning. For example, the principal axes of the inertia tensor define the Poinsot's ellipsoid representing the moment of inertia. Also see Sylvester's law of inertia.

For symmetric tensors of arbitrary order k, decompositions

are also possible. The minimum number r for which such a decomposition is possible is the symmetric rankofT.[3] This minimal decomposition is called a Waring decomposition; it is a symmetric form of the tensor rank decomposition. For second-order tensors this corresponds to the rank of the matrix representing the tensor in any basis, and it is well known that the maximum rank is equal to the dimension of the underlying vector space. However, for higher orders this need not hold: the rank can be higher than the number of dimensions in the underlying vector space. Moreover, the rank and symmetric rank of a symmetric tensor may differ.[4]

See also[edit]

Notes[edit]

  1. ^ Carmo, Manfredo Perdigão do (1992). Riemannian geometry. Francis J. Flaherty. Boston: Birkhäuser. ISBN 0-8176-3490-8. OCLC 24667701.
  • ^ a b Kostrikin, Alexei I.; Manin, Iurii Ivanovich (1997). Linear algebra and geometry. Algebra, Logic and Applications. Vol. 1. Gordon and Breach. pp. 276–279. ISBN 9056990497.
  • ^ Comon, P.; Golub, G.; Lim, L. H.; Mourrain, B. (2008). "Symmetric Tensors and Symmetric Tensor Rank". SIAM Journal on Matrix Analysis and Applications. 30 (3): 1254. arXiv:0802.1681. doi:10.1137/060661569. S2CID 5676548.
  • ^ Shitov, Yaroslav (2018). "A Counterexample to Comon's Conjecture". SIAM Journal on Applied Algebra and Geometry. 2 (3): 428–443. arXiv:1705.08740. doi:10.1137/17m1131970. ISSN 2470-6566. S2CID 119717133.
  • References[edit]

    External links[edit]


    Retrieved from "https://en.wikipedia.org/w/index.php?title=Symmetric_tensor&oldid=1200520109"

    Category: 
    Tensors
    Hidden categories: 
    Articles with short description
    Short description matches Wikidata
    Use American English from February 2019
    All Wikipedia articles written in American English
     



    This page was last edited on 29 January 2024, at 17:53 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki