Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Status today  
3 comments  













Talk:Electromagnetic mass




Page contents not supported in other languages.  









Article
Talk
 

















Read
Edit
Add topic
View history
 








Tools
   


Actions  



Read
Edit
Add topic
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Get shortened URL
Download QR code
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Status today

[edit]

What is the status of the concept in the science of today?--213.233.84.165 (talk) 17:47, 3 January 2016 (UTC)[reply]

Interestingly, a demonstration of pilot waves has been provided from purely classical Maxwell’s electrodynamics and the concept of electromagnetic mass, and published recently in a notable journal (https://doi.org/10.1007/s11071-020-05928-5). I am the author of the paper, and therefore I am not the person allowed to upload the reference, since a COI is at stake. But perhaps, if somebody finds it intereseting, he could introduce a section entitled “Zitterbewegung” with something similar to this:

Charged extended particles can experience self-oscillatory dynamics as a result of classical electrodynamic self-interactions \cite{}. This trembling motion has a frequency that is closely related to the zitterbewegung frequency appearing in Dirac's equation. The mechanism producing these fluctuations arises because some parts of an accelerated charged corpuscle emit electromagnetic perturbations that can affect another part of the body, producing self-forces. Using the Liénard-Wiechert potential as solutions to Maxwell's equations with sources, it can be shown that these forces can be described in terms of state-dependent delay differential equations, which display limit cycle behavior. Therefore, the principle of inertia, as appearing in Newton's first law, would only hold on average, since uniform motion can become unstable through a process of symmetry breaking of the Lorentz group. Alvaro12Lopez (talk) 09:41, 30 September 2020 (UTC)[reply]

There should probably be some mention of the units in use at the time for the equations in the article if they aren't going to be updated. Under current SI units and as written, the mass and energy results would have the wrong units which is likely to cause confusion. You'd need something like , which is true, but in gaining the Coulomb constant (, or in some sources), we seem to have lost the 2/3 factor somewhere and I'm not qualified to say if that's due to the change in units. It could be they are attributing only and exactly 2/3 of the rest mass-energy of an electron () to its charge-energy (); in which case you'd still need . Noting that it is in fact 2/3 of would seem useful in that case. JSC74 (talk) 03:12, 9 July 2023 (UTC)[reply]


Retrieved from "https://en.wikipedia.org/w/index.php?title=Talk:Electromagnetic_mass&oldid=1196693544"

Categories: 
B-Class physics articles
Mid-importance physics articles
B-Class physics articles of Mid-importance
B-Class history of science articles
Mid-importance history of science articles
WikiProject History of Science articles
 



This page was last edited on 18 January 2024, at 05:34 (UTC).

Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



Privacy policy

About Wikipedia

Disclaimers

Contact Wikipedia

Code of Conduct

Developers

Statistics

Cookie statement

Mobile view



Wikimedia Foundation
Powered by MediaWiki