Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Periostin applied at site of cardiac injury regenerates heart tissue after a heart attack  
1 comment  













Talk:Periostin




Page contents not supported in other languages.  









Article
Talk
 

















Read
Edit
Add topic
View history
 








Tools
   


Actions  



Read
Edit
Add topic
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Get shortened URL
Download QR code
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Periostin applied at site of cardiac injury regenerates heart tissue after a heart attack[edit]

http://www.sciencedaily.com/releases/2009/07/090723142039.htm

njection Reverses Heart-attack Damage

ScienceDaily (July 25, 2009) — Injured heart tissue normally can't regrow, but researchers at Children's Hospital Boston have now laid the groundwork for regenerating heart tissue after a heart attack, in patients with heart failure, or in children with congenital heart defects. In the July 24 issue of Cell, they show that a growth factor called neuregulin1 (NRG1), which is involved in the initial development of the heart and nervous system, can spur heart-muscle growth and recovery of cardiac function when injected systemically into animals after a heart attack. After birth, heart-muscle cells (cardiomyocytes) normally withdraw from the cell cycle – meaning they stop dividing and proliferating. But the researchers, led by Bernhard Kühn, MD, and Kevin Bersell of the Department of Cardiology at Children's, were able to restart the cell cycle with NRG1, stimulating cardiomyocytes to divide and make copies of themselves -- even though they are not stem cells.

"Although many efforts have focused on stem-cell based strategies, our work suggests that stem cells aren't required and that stimulating differentiated cardiomyocytes to proliferate may be a viable alternative," says Kühn, the study's senior investigator and a practicing pediatric cardiologist at Children's since 2007.

When the team injected NRG1 into the peritoneal cavity of live mice after a heart attack, once daily for 12 weeks, heart regeneration was increased and pumping function (ejection fraction, assessed on echocardiograms) improved as compared with untreated controls. The NRG1-injected mice also lacked the left-ventricular dilation and cardiac hypertrophy that typify heart failure; both were seen in the controls.

When the researchers also stimulated production of a cellular receptor for NRG1, known as ErbB4, cardiomyocyte proliferation was further enhanced, demonstrating that NRG1 works by stimulating this receptor. They also identified the specific kinds of cardiomyocytes (mononucleated) that are most likely to respond to treatment.

In 2007, Kühn and colleagues first demonstrated that the heart has dormant regenerative capacities that can be reawakened. Kühn developed a sponge-like patch, soaked in a compound called periostin that is abundant in the developing fetal heart (and in injured skeletal muscle) but scarce in adult hearts. When the patch was placed over the site of cardiac injury in rats, it induced cardiomyocyte proliferation and improved heart function (Nature Medicine 2007; 13:962-9). Similar results were seen in larger animals, and periostin is now in preclinical development at Children's Hospital Boston for future application in human patients with heart failure.

The new work adds a second compound to the heart-regeneration toolbox, and reveals how both periostin and NRG-1 work at the cellular and molecular level, an essential step in predicting possible side effects. Both compounds ultimately act on the same cellular pathway, Kühn found.

"We applied periostin locally at the site of cardiac injury, but NRG1 works when given by systemic injection – a very promising result that suggests it may be feasible to use this in the clinic to treat heart failure," says Kühn, who won a first prize Young Investigator Award, from the American College of Cardiology in 2007.

The study was funded by the Department of Cardiology at Children's Hospital Boston, the Charles Hood Foundation, and the American Heart Association. Adapted from materials provided by Children's Hospital Boston, via EurekAlert!, a service of AAAS. —Preceding unsigned comment added by 72.65.66.115 (talk) 00:52, 26 July 2009 (UTC)[reply]


Retrieved from "https://en.wikipedia.org/w/index.php?title=Talk:Periostin&oldid=1202626609"

Categories: 
Stub-Class Molecular Biology articles
Unknown-importance Molecular Biology articles
Stub-Class MCB articles
Low-importance MCB articles
WikiProject Molecular and Cellular Biology articles
All WikiProject Molecular Biology pages
 



This page was last edited on 3 February 2024, at 04:58 (UTC).

Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



Privacy policy

About Wikipedia

Disclaimers

Contact Wikipedia

Code of Conduct

Developers

Statistics

Cookie statement

Mobile view



Wikimedia Foundation
Powered by MediaWiki