Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Formal definition of Tannakian categories  





2 Applications  





3 Extensions  





4 References  





5 Further reading  














Tannakian formalism







 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Inmathematics, a Tannakian category is a particular kind of monoidal category C, equipped with some extra structure relative to a given field K. The role of such categories C is to generalise the category of linear representations of an algebraic group G defined over K. A number of major applications of the theory have been made, or might be made in pursuit of some of the central conjectures of contemporary algebraic geometry and number theory.

The name is taken from Tadao Tannaka and Tannaka–Krein duality, a theory about compact groups G and their representation theory. The theory was developed first in the school of Alexander Grothendieck. It was later reconsidered by Pierre Deligne, and some simplifications made. The pattern of the theory is that of Grothendieck's Galois theory, which is a theory about finite permutation representations of groups G which are profinite groups.

The gist of the theory is that the fiber functor Φ of the Galois theory is replaced by an exact and faithful tensor functor F from C to the category of finite-dimensional vector spaces over K. The group of natural transformations of Φ to itself, which turns out to be a profinite group in the Galois theory, is replaced by the group Gofnatural transformationsofF into itself, that respect the tensor structure. This is in general not an algebraic group but a more general group scheme that is an inverse limit of algebraic groups (pro-algebraic group), and C is then found to be equivalent to the category of finite-dimensional linear representations of G.

More generally, it may be that fiber functors F as above only exists to categories of finite dimensional vector spaces over non-trivial extension fields L/K. In such cases the group scheme G is replaced by a gerbe on the fpqc site of Spec(K), and C is then equivalent to the category of (finite-dimensional) representations of .

Formal definition of Tannakian categories[edit]

Let K be a field and CaK-linear abelian rigid tensor (i.e., a symmetric monoidal) category such that . Then C is a Tannakian category (over K) if there is an extension field LofK such that there exists a K-linear exact and faithful tensor functor (i.e., a strong monoidal functor) F from C to the category of finite dimensional L-vector spaces. A Tannakian category over Kisneutral if such exact faithful tensor functor F exists with L=K.[1]

Applications[edit]

The tannakian construction is used in relations between Hodge structure and l-adic representation. Morally, the philosophy of motives tells us that the Hodge strucuture and the Galois representation associated to an algebraic variety are related to each other. The closely-related algebraic groups Mumford–Tate group and motivic Galois group arise from categories of Hodge structures, category of Galois representations and motives through Tannakian categories. Mumford-Tate conjecture proposes that the algebraic groups arising from the Hodge strucuture and the Galois representation by means of Tannakian categories are isomorphic to one another up to connected components.

Those areas of application are closely connected to the theory of motives. Another place in which Tannakian categories have been used is in connection with the Grothendieck–Katz p-curvature conjecture; in other words, in bounding monodromy groups.

The Geometric Satake equivalence establishes an equivalence between representations of the Langlands dual group of a reductive group G and certain equivariant perverse sheaves on the affine Grassmannian associated to G. This equivalence provides a non-combinatorial construction of the Langlands dual group. It is proved by showing that the mentioned category of perverse sheaves is a Tannakian category and identifying its Tannaka dual group with .

Extensions[edit]

Wedhorn (2004) has established partial Tannaka duality results in the situation where the category is R-linear, where R is no longer a field (as in classical Tannakian duality), but certain valuation rings. Iwanari (2018) has initiated and developed Tannaka duality in the context of infinity-categories.

References[edit]

Further reading[edit]


Retrieved from "https://en.wikipedia.org/w/index.php?title=Tannakian_formalism&oldid=1213814843"

Categories: 
Monoidal categories
Algebraic groups
Duality theories
Hidden categories: 
Articles with short description
Short description matches Wikidata
 



This page was last edited on 15 March 2024, at 08:08 (UTC).

Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



Privacy policy

About Wikipedia

Disclaimers

Contact Wikipedia

Code of Conduct

Developers

Statistics

Cookie statement

Mobile view



Wikimedia Foundation
Powered by MediaWiki