Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Introduction  



1.1  Tate modules  







2 Tate objects  





3 Related notions and applications  





4 Notes  





5 References  














Tate vector space







Add links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


In mathematics, a Tate vector space is a vector space obtained from finite-dimensional vector spaces in a way that makes it possible to extend concepts such as dimension and determinant to an infinite-dimensional situation. Tate spaces were introduced by Alexander Beilinson, Boris Feigin, and Barry Mazur (1991), who named them after John Tate.

Introduction[edit]

A typical example of a Tate vector space over a field k are the Laurent power series

It has two characteristic features:

are finite-dimensional k-vector spaces.

Tate modules[edit]

Tate modules were introduced by Drinfeld (2006) to serve as a notion of infinite-dimensional vector bundles. For any ring R, Drinfeld defined elementary Tate modules to be topological R-modules of the form

where P and Q are projective R-modules (of possibly infinite rank) and * denotes the dual.

For a field, Tate vector spaces in this sense are equivalent to locally linearly compact vector spaces, a concept going back to Lefschetz. These are characterized by the property that they have a base of the topology consisting of commensurable sub-vector spaces.

Tate objects[edit]

Tate objects can be defined in the context of any exact category C.[1] Briefly, an exact category is way to axiomatize certain features of short exact sequences. For example, the category of finite-dimensional k-vector spaces, or the category of finitely generated projective R-modules, for some ring R, is an exact category, with its usual notion of short exact sequences.

The extension of the above example to a more general situation is based on the following observation: there is an exact sequence

whose outer terms are an inverse limit and a direct limit, respectively, of finite-dimensional k-vector spaces

In general, for an exact category C, there is the category Pro(C) of pro-objects and the category Ind(C) of ind-objects. This construction can be iterated and yields an exact category Ind(Pro(C)). The category of elementary Tate objects

is defined to be the smallest subcategory of those Ind-Pro objects V such that there is a short exact sequence

where L is a pro-object and L' is an ind-object. It can be shown that this condition on V is equivalent to that requiring for an ind-presentation

the quotients are in C (as opposed to Pro(C)).

The category Tate(C) of Tate objects is defined to be the closure under retracts (idempotent completion) of elementary Tate objects.

Braunling, Groechenig & Wolfson (2016) showed that Tate objects (for C the category of finitely generated projective R-modules, and subject to the condition that the indexing families of the Ind-Pro objects are countable) are equivalent to countably generated Tate R-modules in the sense of Drinfeld mentioned above.

Related notions and applications[edit]

ATate Lie algebra is a Tate vector space with an additional Lie algebra structure. An example of a Tate Lie algebra is the Lie algebra of formal power series over a finite-dimensional Lie algebra.

The category of Tate objects is an exact category, as well, as can be shown. The construction can therefore be iterated, which is relevant to applications in higher-dimensional class field theory,[2] which studies higher local fields such as

Kapranov (2001) has introduced the so-called determinant torsor for Tate vector spaces, which extends the usual linear algebra notions of determinants and traces etc. to automorphisms f of Tate vector spaces V. The essential idea is that, even though a lattice LinV is infinite-dimensional, the lattices L and f(L) are commensurable, so that the ? in the finite-dimensional sense can be uniquely extended to all lattices, provided that the determinant of one lattice is fixed. Clausen (2009) has applied this torsor to simultaneously prove the Riemann–Roch theorem, Weil reciprocity and the sum of residues formula. The latter formula was already proved by Tate (1968) by similar means.

Notes[edit]

  • ^ Arkhipov & Kremnizer (2010)
  • References[edit]


    Retrieved from "https://en.wikipedia.org/w/index.php?title=Tate_vector_space&oldid=1210181999"

    Categories: 
    Lie algebras
    Algebraic geometry
     



    This page was last edited on 25 February 2024, at 10:42 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki