Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Biology  





2 Phylogenetics  





3 Social behaviors  





4 Selected species  





5 Notes  





6 References  





7 Further reading  





8 External links  














Temnothorax






Català
Français
Italiano
Magyar
Nederlands
Português
Русский
Українська
Tiếng Vit

 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 




In other projects  



Wikimedia Commons
Wikispecies
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Temnothorax
Temnothorax affinis, Belgium
Scientific classification Edit this classification
Domain: Eukaryota
Kingdom: Animalia
Phylum: Arthropoda
Class: Insecta
Order: Hymenoptera
Family: Formicidae
Subfamily: Myrmicinae
Tribe: Crematogastrini
Genus: Temnothorax
Mayr, 1861
Type species
Temnothorax recedens

Nylander, 1856

Diversity[1]
380 species
Synonyms

Antillaemyrmex Mann, 1920
Chalepoxenus Menozzi, 1923
Croesomyrmex Mann, 1920
Dichothorax Emery, 1895
Epimyrma Emery, 1915[a]
Icothorax Hamann & Klemm, 1967
Leonomyrma Arnol'di, 1968
Macromischa Roger, 1863
Myrafant Smith, M.R., 1950
Myrmammophilus Menozzi, 1925
Myrmetaerus Soudek, 1925[a]
Myrmoxenus Ruzsky, 1902[a]
Protomognathus Wheeler, W.M., 1905

Temnothorax schaumii, Maryland

Temnothorax is a genusofants in the subfamily Myrmicinae. It contains more than 380 species.[1]

Biology

[edit]

The workers of Temnothorax species are generally small. Colonies are typically monogynous, although facultative polygyny has been documented in several species. Colony populations are usually quite small, often with less than 100 workers. However, several studies have found colonies of some species to be widely dispersed with several to many satellite nests. Many species are arboreal, living within hollow stems, old beetle or termite galleries, or in galls. Temnothorax species appear to be trophic generalists, feeding on a wide variety of scavenged items, including the elaiosomes of seeds. None have been documented to be active or aggressive predators.[4]

Phylogenetics

[edit]

Recent molecular phylogenetic studies show that the genera Chalepoxenus, Myrmoxenus and Protomognathus are nested within Temnothorax, and that the latter is distinct from the more distantly related genera Formicoxenus, Leptothorax and Harpagoxenus. Species in these 'satellite' genera live as social parasites within the nests of other species of Temnothorax.[4]

Social behaviors

[edit]

AsTemnothorax colonies are small and easy to maintain in a laboratory environment, they are often used to study social behaviour in ants.[1]Temnothorax have been used to show displays of social structures through communication, colony responsibility, and influence.

Communication among ants has been observed[by whom?] and assumed to be entirely influenced through substrate-bound odor cues. However, this previous determined social factor has been disproved among the Temnothorax as recorded in the study conducted by Sean R Bowens, Daniel P Glatt, and Stephen C Pratt. Their study observed the navigational influences during emigration. The study consisted of forcing emigration in a colony to a new nest and change the visual and odor cues to the old nest. The new nest was rotated 60 degrees around the old nest in order to keep the visual cues but expel odor cues. The ants were then observed by their success in finding their way back to the old nest. When the odor cues were obstructed but the visual cues were not the ants did not have a problem locating the old nest. The study then changed to remove both the odor and visual cues. When this was done the ants showed disoriented behavior when searching for the old nest. Lastly, the study observed the ants when the visual cue was obstructed but not the odor cues. It was discovered that when the visual cues were obstructed and the ant had only odor cues to use for navigation the ants continued to display disoriented behavior and not only could not find the old nest, they walked in the opposite direction from it. This has led the study to conclude that among Temnothorax this species relies on visual cues rather than odor cues, and it is now assumed that odor cues are simply used to mark territory.[5]

Among the Temnothorax it has been studied as to how effectively the queen of a colony can dominate the reproductive decisions of her workers. In a study completed by Elisabeth Brunner, Johannes Kroiss, Andreas Trindl, and Jürgen Heinze, the queens of different colonies among similar species were observed in their influence over the reproduction of male workers; and whether or not the queen was manipulating their reproduction through active suppression or by implanting an honest signal of pheromones to broadcast fertility status. The study looked at queens in a mixed-species colonies and in colonies of the same species and at the cast-specific patterns of the cuticular hydrocarbons present. In the mixed- species colonies the queens were not able to completely suppress the reproduction of the male workers. In the colonies consisting of the same species the queen was able to suppress the male workers. It could be that the chemical profiles of the cuticular hydrocarbons differentiated between the queens of separate species. However, since the queens were still able to suppress the male workers somewhat, this supports the hypothesis that queens use an honest signal to manipulate the reproduction of male workers.[6]

In a study completed by Anna Dornhaus, Jo-Anne Holley, and Nigel R. Franks, the communal responsibilities within the colonies of Temnothorax were observed to determine if the size of a colony influences the division of labor among workers. By studying 11 colonies of both large and small population sizes (a small colony to consist of 200 to 400 individuals and a large colony to consist of 500 to 700 individuals) with approximately less than 1100 individually marked worker ants the researchers were able to determine how tasks were divided and the proportion of how many workers were active or inactive in the completion of tasks. The researchers charted seven different task required to be done during the emigration process from an old nest to a new one: scouting, brood transport, adult transport, collection of food which was separated into two tasks for collecting dead flies (Drosophila) and collecting honey solution, collection of sand materials for wall building, and the actual task of wall building. It was observed that between the sizes of the large and small colonies the ratio of active and non-active works was consistent, with the larger colonies having a slightly higher ratio of active workers but not enough to be statistically significant. It was also observed that among active and inactive workers it was consistent that usually less than 25% and never more than 50% of the workers were active. This could be that the non-active workers were completing tasks that were not being observed. Specialization of tasks was also not determined by colony size. However of the active workers it was shown that there was a disproportion of the rate at which active workers complete tasks with typically a few individuals doing more of the work than the other active workers. These ratios were also consistent in times when either a high or low phase of activity was required to complete emigration to the new nest.[7]

Selected species

[edit]
  • Temnothorax americanus
  • Temnothorax brunneus
  • Temnothorax corsicus
  • Temnothorax curvispinosus
  • Temnothorax exilis
  • Temnothorax fragosus
  • Temnothorax gallae
  • Temnothorax inquilinus
  • Temnothorax kutteri
  • Temnothorax lichtensteini
  • Temnothorax longispinosus
  • Temnothorax muellerianus
  • Temnothorax nylanderi
  • Temnothorax pilagens
  • Temnothorax rugatulus
  • Temnothorax sentosus
  • Temnothorax tarbinskii
  • Temnothorax texanus
  • Temnothorax tramieri
  • Temnothorax unifasciatus
  • Temnothorax zabelini
  • Notes

    [edit]
    1. ^ a b c Myrmoxenus (including its junior synonyms Epimyrma and Myrmetaerus) was synonymized under Temnothorax by Ward et al. (2015),[2] but the change was not accepted by Heinze et al. (2015) due to insufficient available data.[3]

    References

    [edit]
    1. ^ a b c Csősz S, Heinze J, Mikó I (2015-11-04). "Taxonomic Synopsis of the Ponto-Mediterranean Ants of Temnothorax nylanderi Species-Group". PLOS ONE. 10 (11): e0140000. Bibcode:2015PLoSO..1040000C. doi:10.1371/journal.pone.0140000. PMC 4633182. PMID 26536033.
  • ^ Ward PS, Brady SG, Fisher BL, Schultz TR (July 2014). "The evolution of myrmicine ants: phylogeny and biogeography of a hyperdiverse ant clade (Hymenoptera: Formicidae)". Systematic Entomology. 40 (1): 61–81. Bibcode:2015SysEn..40...61W. doi:10.1111/syen.12090. ISSN 1365-3113. S2CID 83986771.
  • ^ Heinze J, Buschinger A, Poettinger T, Suefuji M (2015). "Multiple Convergent Origins of Workerlessness and Inbreeding in the Socially Parasitic Ant Genus Myrmoxenus". PLOS ONE. 10 (7): e0131023. Bibcode:2015PLoSO..1031023H. doi:10.1371/journal.pone.0131023. PMC 4519230. PMID 26221735.
  • ^ a b Snelling RR, Borowiec ML, Prebus MM (2014). "Studies on California ants: a review of the genus Temnothorax (Hymenoptera, Formicidae)". ZooKeys (372): 27–89. Bibcode:2014ZooK..372...27S. doi:10.3897/zookeys.372.6039. PMC 3909803. PMID 24493957.
  • ^ Bowens SR, Glatt DP, Pratt SC (May 9, 2013). "Visual navigation during colony emigration by the ant Temnothorax curvispinosus [corrected]". PLOS ONE. 8 (5): e64367. Bibcode:2013PLoSO...864367B. doi:10.1371/journal.pone.0064367. PMC 3650068. PMID 23671713.
  • ^ Brunner E, Kroiss J, Trindl A, Heinze J (March 2011). "Queen pheromones in Temnothorax ants: control or honest signal?". BMC Evolutionary Biology. 11 (1): 55. Bibcode:2011BMCEE..11...55B. doi:10.1186/1471-2148-11-55. PMC 3060118. PMID 21356125.
  • ^ Dornhaus A, Holley JA, Franks NR (2009). "Larger colonies do not have more specialized workers in the ant Temnothorax albipennis". Behavioral Ecology. 20 (5): 922–929. doi:10.1093/beheco/arp070.
  • Further reading

    [edit]

    "Genus: Temnothorax". antweb.org. AntWeb. Retrieved 5 July 2014.

    [edit]
    Retrieved from "https://en.wikipedia.org/w/index.php?title=Temnothorax&oldid=1232571640"

    Categories: 
    Myrmicinae
    Ant genera
    Hidden categories: 
    Articles with short description
    Short description is different from Wikidata
    Articles using diversity taxobox
    Articles with 'species' microformats
    Articles with specifically marked weasel-worded phrases from June 2017
    Wikipedia articles incorporating text from open access publications
    Commons category link is on Wikidata
     



    This page was last edited on 4 July 2024, at 12:28 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki