Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Existing systems  



1.1  COAST Guidewire Robot  





1.2  Myorobotics  





1.3  Roboy  





1.4  Kenshiro  





1.5  BioRob  





1.6  Caliper  





1.7  ACT hand  







2 See also  





3 References  





4 External links  














Tendon-driven robot







Add links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Tendon-driven robots (TDR) are robots whose limbs mimic biological musculoskeletal systems. They use plastic straps to mimic muscles and tendons. Such robots are claimed to move in a "more natural" way than traditional robots that use rigid metal or plastic limbs controlled by geared actuators. TDRs can also help understand how biomechanics relates to embodied intelligence and cognition.[1]

Challenges include effectively modeling the human body's complex motions and ensuring accurate positioning, given that the tendons are prone to stretch, which costs them strength and smooth operation.[1]

Existing systems[edit]

TDRs are the subject of considerable research and commercial systems followed.

COAST Guidewire Robot[edit]

The COAST Guidewire Robot is a work from the Georgia Institute of Technology. This robot, designed for potential use in cardiovascular procedures, uses a tendon to bend the guidewire made of nested tubes from superelastic nitinol. The design contains three coaxially aligned tubes a centrally routed tendon attached to the distal end of the middle tube. The outer tubes are made fabricated by micromachining notches through the use of lasers which allows the robot to bend with the use of the tendon. It is among the world's smallest steerable robotic systems actuated by microtendons, with an overall outer diameter of 0.4 mm.[2]

Myorobotics[edit]

Myorobotics is a toolkit comprising muscles, tendons, joints, and bones to build diverse tendon-driven musculoskeletal robots, e.g. anthropomimetic arms[3] with complex shoulder joints, quadrupeds,[4] and hopping robots.[5] Robots can be assembled, optimized, and simulated from primitives, then built and controlled either from the same software or from brain-like spiking neural networks simulated on a neuromorphic computer.[6]

Roboy[edit]

Roboy is four feet tall and has two tendon-driven arms. Researchers announced plans to make Roboy's design open-source, allowing anyone with a 3-D printer to build and tinker with their own version.[7]

Kenshiro[edit]

Kenshiro is a University of Tokyo robot announced in 2012. Kenshiro is somewhat larger than Roboy and includes 160 pulley-like muscles and aluminum bones that allow it to perform simple bends and poses.[8]

BioRob[edit]

Bionic Robotics offered BioRob, a tendon-driven robotic arm for industrial use. It has a flexible mechanical structure that allows it to pick up heavy payloads even though it weighs much less than the conventional robotic arm that the company also makes. BioRob's light weight and flexible design is claimed to offer greater safety for use around human workers.

Caliper[edit]

Caliper is a framework for the simulation of tendon-driven robots. It consists of a generic physics simulator capable of utilizing computer-aided design models and tools for simulation control, data acquisition and system investigation.[9]

ACT hand[edit]

The Anatomically Correct Testbed robotic hand[10] uses tendons and woven finger extensor hoods to capture the biomechanical properties of the human hand. The tendons slide over 3D printed bones matching human bone shapes, reproducing the variable moment arms and some of the tendon network interactions found in the human hand. The tendons are actuated by direct drive (without gearing), allowing them to spool out freely when other tendons oppose them in the skeleton.[11]

See also[edit]

References[edit]

  1. ^ a b Hope, Aviva (2013-09-27). "Some Robots Are Starting to Move More Like Humans | MIT Technology Review". Technologyreview.com. Retrieved 2013-10-07.
  • ^ Jeong, S.; Chitalia, Y.; Desai, J. (July 2020). "Design, Modeling, and Control of a Coaxially Aligned Steerable (COAST) Guidewire Robot -". IEEE Robotics and Automation Letters. IEEE Robotics and Automation Letters. pp. 4947–4954. doi:10.1109/LRA.2020.3004782.
  • ^ Richter, Christoph; Jentzsch, Soren; Hostettler, Rafael; Garrido, Jesus A.; Ros, Eduardo; Knoll, Alois; Rohrbein, Florian; Van Der Smagt, Patrick; Conradt, Jorg (2016). "Musculoskeletal Robots: Scalability in Neural Control". IEEE Robotics & Automation Magazine. 23 (4): 128–137. arXiv:1601.04862. doi:10.1109/MRA.2016.2535081.
  • ^ http://myorobotics.eu/myo-projects/myocheetah/
  • ^ http://myorobotics.eu/myo-projects/hopper/
  • ^ Richter, C.; Jentzsch, S.; Hostettler, R.; Garrido, J. A.; Ros, E.; Knoll, A.; Rohrbein, F.; Smagt, P. van der; Conradt, J.P. (December 2016). "Musculoskeletal Robots: Scalability in Neural Control". IEEE Robotics Automation Magazine. 23 (4): 128–137. arXiv:1601.04862. doi:10.1109/MRA.2016.2535081. ISSN 1070-9932. S2CID 15072613.
  • ^ ROBOY videoonYouTube
  • ^ Kozuki, T.; Mizoguchi, H.; Asano, Y.; Osada, M.; Shirai, T.; Junichi, U.; Nakanishi, Y.; Okada, K.; Inaba, M. (October 2012). "Design methodology for the thorax and shoulder of human mimetic musculoskeletal humanoid Kenshiro -a thorax structure with rib like surface -". 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems. 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems. pp. 3687–3692. doi:10.1109/IROS.2012.6386166.
  • ^ Wittmeier, S.; Jantsch, M.; Dalamagkidis, K.; Rickert, M.; Marques, H. G.; Knoll, A. (2011). "CALIPER: A universal robot simulation framework for tendon-driven robots". 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems (PDF). p. 1063. doi:10.1109/IROS.2011.6094455. ISBN 978-1-61284-456-5. S2CID 2278435.
  • ^ Rombokas, Eric; et al. (2013). "Tendon-Driven Variable Impedance Control Using Reinforcement Learning" (PDF). Robotics Science and Systems: 369.
  • ^ "University of Texas at Austin, ReNeu Robotics Lab".
  • External links[edit]


    Retrieved from "https://en.wikipedia.org/w/index.php?title=Tendon-driven_robot&oldid=1214304212"

    Category: 
    Humanoid robots
     



    This page was last edited on 18 March 2024, at 04:03 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki