Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Electrostatics  





2 Classical gravity  





3 General relativity  





4 See also  





5 References  














Test particle






العربية
Чӑвашла
Español
فارسی
Français


Oʻzbekcha / ўзбекча
Português
Русский
Svenska
 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Inphysical theories, a test particle, or test charge, is an idealized model of an object whose physical properties (usually mass, charge, or size) are assumed to be negligible except for the property being studied, which is considered to be insufficient to alter the behaviour of the rest of the system. The concept of a test particle often simplifies problems, and can provide a good approximation for physical phenomena. In addition to its uses in the simplification of the dynamics of a system in particular limits, it is also used as a diagnostic in computer simulations of physical processes.

Electrostatics[edit]

In simulations with electric fields the most important characteristics of a test particle is its electric charge and its mass. In this situation it is often referred to as a test charge.

The electric field created by a point charge qis

,

where ε0 is the vacuum electric permittivity.

Multiplying this field by a test charge gives an electric force (Coulomb's law) exerted by the field on a test charge. Note that both the force and the electric field are vector quantities, so a positive test charge will experience a force in the direction of the electric field.

Classical gravity[edit]

The easiest case for the application of a test particle arises in Newton's law of universal gravitation. The general expression for the gravitational force between any two point masses and is:

,

where and represent the position of each particle in space. In the general solution for this equation, both masses rotate around their center of mass R, in this specific case:[1]

.

In the case where one of the masses is much larger than the other (), one can assume that the smaller mass moves as a test particle in a gravitational field generated by the larger mass, which does not accelerate. We can define the gravitational field as

,

with as the distance between the massive object and the test particle, and is the unit vector in the direction going from the massive object to the test mass. Newton's second law of motion of the smaller mass reduces to

,

and thus only contains one variable, for which the solution can be calculated more easily. This approach gives very good approximations for many practical problems, e.g. the orbits of satellites, whose mass is relatively small compared to that of the Earth.

General relativity[edit]

In metric theories of gravitation, particularly general relativity, a test particle is an idealized model of a small object whose mass is so small that it does not appreciably disturb the ambient gravitational field.

According to the Einstein field equations, the gravitational field is locally coupled not only to the distribution of non-gravitational mass–energy, but also to the distribution of momentum and stress (e.g. pressure, viscous stresses in a perfect fluid).

In the case of test particles in a vacuum solutionorelectrovacuum solution, this turns out to imply that in addition to the tidal acceleration experienced by small clouds of test particles (with spin or not), test particles with spin may experience additional accelerations due to spin–spin forces.[2]

See also[edit]

References[edit]

  1. ^ Herbert Goldstein (1980). Classical Mechanics, 2nd Ed. Addison-Wesley. p. 5.
  • ^ Poisson, Eric. "The Motion of Point Particles in Curved Spacetime". Living Reviews in Relativity. Retrieved March 26, 2004.

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=Test_particle&oldid=1234289649"

    Category: 
    Mathematical methods in general relativity
     



    This page was last edited on 13 July 2024, at 15:46 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki