Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Observations and Arguments  





2 Responses  



2.1  Richard Hamming  





2.2  Max Tegmark  





2.3  Ivor Grattan-Guinness  





2.4  Michael Atiyah  







3 See also  





4 References  





5 Further reading  














The Unreasonable Effectiveness of Mathematics in the Natural Sciences






العربية

Català
Español
فارسی
Italiano
Русский

 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


"The Unreasonable Effectiveness of Mathematics in the Natural Sciences" is a 1960 article written by the physicist Eugene Wigner, published in Communication in Pure and Applied Mathematics.[1][2] In it, Wigner observes that a theoretical physics's mathematical structure often points the way to further advances in that theory and to empirical predictions. Mathematical theories often have predictive power in describing nature.

Observations and Arguments[edit]

Wigner argues that mathematical concepts have applicability far beyond the context in which they were originally developed. He writes: "It is important to point out that the mathematical formulation of the physicist's often crude experience leads in an uncanny number of cases to an amazingly accurate description of a large class of phenomena."[3] He adds that the observation "the laws of nature are written in the language of mathematics," properly made by Galileo three hundred years ago, "is now truer than ever before."

Wigner's first example is the law of gravitation formulated by Isaac Newton. Originally used to model freely falling bodies on the surface of the Earth, this law was extended based on what Wigner terms "very scanty observations"[3] to describe the motion of the planets, where it "has proved accurate beyond all reasonable expectations."[4] Wigner says that "Newton ... noted that the parabola of the thrown rock's path on the earth and the circle of the moon's path in the sky are particular cases of the same mathematical object of an ellipse, and postulated the universal law of gravitation on the basis of a single, and at that time very approximate, numerical coincidence."

Wigner's second example comes from quantum mechanics: Max Born "noticed that some rules of computation, given by Heisenberg, were formally identical with the rules of computation with matrices, established a long time before by mathematicians. Born, Jordan, and Heisenberg then proposed to replace by matrices the position and momentum variables of the equations of classical mechanics. They applied the rules of matrix mechanics to a few highly idealized problems and the results were quite satisfactory. However, there was, at that time, no rational evidence that their matrix mechanics would prove correct under more realistic conditions." But Wolfgang Pauli found their work accurately described the hydrogen atom: "This application gave results in agreement with experience." The helium atom, with two electrons, is more complex, but "nevertheless, the calculation of the lowest energy level of helium, as carried out a few months ago by Kinoshita at Cornell and by Bazley at the Bureau of Standards, agrees with the experimental data within the accuracy of the observations, which is one part in ten million. Surely in this case we 'got something out' of the equations that we did not put in." The same is true of the atomic spectra of heavier elements.

Wigner's last example comes from quantum electrodynamics: "Whereas Newton's theory of gravitation still had obvious connections with experience, experience entered the formulation of matrix mechanics only in the refined or sublimated form of Heisenberg's prescriptions. The quantum theory of the Lamb shift, as conceived by Bethe and established by Schwinger, is a purely mathematical theory and the only direct contribution of experiment was to show the existence of a measurable effect. The agreement with calculation is better than one part in a thousand."

There are examples beyond the ones mentioned by Wigner. Another often cited example is Maxwell's equations, derived to model the elementary electrical and magnetic phenomena known in the mid-19th century. The equations also describe radio waves, discovered by David Edward Hughes in 1879, around the time of James Clerk Maxwell's death.

Responses[edit]

Amongst the responses the thesis received include:

Richard Hamming[edit]

Mathematician and Turing Award laureate Richard Hamming reflected on and extended Wigner's Unreasonable Effectiveness in 1980, discussing four "partial explanations" for it,[5] and concluding that they were unsatisfactory. They were:

1. Humans see what they look for. The belief that science is experimentally grounded is only partially true. Hamming gives four examples of nontrivial physical phenomena he believes arose from the mathematical tools employed and not from the intrinsic properties of physical reality.

Suppose that a falling body broke into two pieces. Of course, the two pieces would immediately slow down to their appropriate speeds. But suppose further that one piece happened to touch the other one. Would they now be one piece and both speed up? Suppose I tie the two pieces together. How tightly must I do it to make them one piece? A light string? A rope? Glue? When are two pieces one?[12]

There is simply no way a falling body can "answer" such hypothetical "questions." Hence Galileo would have concluded that "falling bodies need not know anything if they all fall with the same velocity, unless interfered with by another force." After coming up with this argument, Hamming found a related discussion in Pólya (1963: 83-85).[13] Hamming's account does not reveal an awareness of the 20th-century scholarly debate over just what Galileo did.[clarification needed]

2. Humans create and select the mathematics that fit a situation. The mathematics at hand does not always work. For example, when mere scalars proved awkward for understanding forces, first vectors, then tensors, were invented.

3. Mathematics addresses only a part of human experience. Much of human experience does not fall under science or mathematics but under the philosophy of value, including ethics, aesthetics, and political philosophy. To assert that the world can be explained via mathematics amounts to an act of faith.

4. Evolution has primed humans to think mathematically. The earliest lifeforms must have contained the seeds of the human ability to create and follow long chains of close reasoning.

Max Tegmark[edit]

Physicist Max Tegmark argued that the effectiveness of mathematics in describing external physical reality is because the physical world is an abstract mathematical structure.[8][15] This theory, referred to as the mathematical universe hypothesis, mirrors ideas previously advanced by Peter Atkins.[16] However, Tegmark explicitly states that "the true mathematical structure isomorphic to our world, if it exists, has not yet been found." Rather, mathematical theories in physics are successful because they approximate more complex and predictive mathematics. According to Tegmark, "Our successful theories are not mathematics approximating physics, but simple mathematics approximating more complex mathematics."

Ivor Grattan-Guinness[edit]

Ivor Grattan-Guinness found the effectiveness in question eminently reasonable and explicable in terms of concepts such as analogy, generalization, and metaphor.[9][clarification needed]

Michael Atiyah[edit]

The tables were turned by Michael Atiyah with his essay "The unreasonable effectiveness of physics in mathematics." He argued that the toolbox of physics enables a practitioner like Edward Witten to go beyond standard mathematics, in particular the geometry of 4-manifolds. The tools of a physicist are cited as quantum field theory, special relativity, non-abelian gauge theory, spin, chirality, supersymmetry, and the electromagnetic duality.[17]

See also[edit]

  • Foundations of mathematics
  • Mark Steiner
  • Mathematical universe hypothesis
  • Philosophy of science
  • Quasi-empiricism in mathematics
  • Relationship between mathematics and physics
  • Scientific structuralism
  • Unreasonable ineffectiveness of mathematics
  • Where Mathematics Comes From
  • References[edit]

    1. ^ Wigner, E. P. (1960). "The unreasonable effectiveness of mathematics in the natural sciences. Richard Courant lecture in mathematical sciences delivered at New York University, May 11, 1959". Communications on Pure and Applied Mathematics. 13 (1): 1–14. Bibcode:1960CPAM...13....1W. doi:10.1002/cpa.3160130102. S2CID 6112252. Archived from the original on 2021-02-12.
  • ^ Note: Wigner's mention of Kellner and Hilleraas "... Jordan felt that we would have been, at least temporarily, helpless had an unexpected disagreement occurred in the theory of the helium atom. This was, at that time, developed by Kellner and by Hilleraas ..." refers to Georg W. Kellner (Kellner, Georg W. (1927). "Die Ionisierungsspannung des Heliums nach der Schrödingerschen Theorie". Zeitschrift für Physik. 44 (1–2): 91–109. Bibcode:1927ZPhy...44...91K. doi:10.1007/BF01391720. S2CID 122213875.) and to Egil Hylleraas.
  • ^ a b Wigner 1960, §Is the Success of Physical Theories Truly Surprising? p. 8
  • ^ Wigner 1960, p. 9
  • ^ a b Hamming, R. W. (1980). "The Unreasonable Effectiveness of Mathematics". The American Mathematical Monthly. 87 (2): 81–90. doi:10.2307/2321982. hdl:10945/55827. JSTOR 2321982. Archived from the original on 2022-06-22. Retrieved 2021-07-30.
  • ^ Lesk, A. M. (2000). "The unreasonable effectiveness of mathematics in molecular biology". The Mathematical Intelligencer. 22 (2): 28–37. doi:10.1007/BF03025372. S2CID 120102813.
  • ^ Halevy, A.; Norvig, P.; Pereira, F. (2009). "The Unreasonable Effectiveness of Data" (PDF). IEEE Intelligent Systems. 24 (2): 8–12. doi:10.1109/MIS.2009.36. S2CID 14300215. Archived (PDF) from the original on 2022-08-09. Retrieved 2015-09-04.
  • ^ a b Tegmark, Max (2008). "The Mathematical Universe". Foundations of Physics. 38 (2): 101–150. arXiv:0704.0646. Bibcode:2008FoPh...38..101T. doi:10.1007/s10701-007-9186-9. S2CID 9890455.
  • ^ a b Grattan-Guinness, I. (2008). "Solving Wigner's mystery: The reasonable (though perhaps limited) effectiveness of mathematics in the natural sciences". The Mathematical Intelligencer. 30 (3): 7–17. doi:10.1007/BF02985373. S2CID 123174309.
  • ^ Velupillai, K. V. (2005). "The unreasonable ineffectiveness of mathematics in economics". Cambridge Journal of Economics. 29 (6): 849–872. CiteSeerX 10.1.1.194.6586. doi:10.1093/cje/bei084.
  • ^ "The Unreasonable Effectiveness of Mathematics - R.W. Hamming - Some Partial Explanations". ned.ipac.caltech.edu. Retrieved 2024-01-06.
  • ^ Van Helden, Albert (1995). "On Motion". The Galileo Project. Archived from the original on 21 December 2017. Retrieved 16 October 2013.
  • ^ Pólya, George; Bowden, Leon; School Mathematics Study Group (1963). Mathematical methods in science; a course of lectures. Studies in mathematics. Vol. 11. Stanford: School Mathematics Study Group. OCLC 227871299.
  • ^ Folland, Gerald B.; Sitaram, Alladi (1997). "The Uncertainty Principle: A Mathematical Survey". Journal of Fourier Analysis and Applications. 3 (3): 207–238. doi:10.1007/BF02649110. S2CID 121355943.
  • ^ Tegmark, Max (2014). Our Mathematical Universe. Knopf. ISBN 978-0-307-59980-3.
  • ^ Atkins, Peter (1992). Creation Revisited. W.H.Freeman. ISBN 978-0-7167-4500-6.
  • ^ Atiyah, Michael (2002). "The unreasonable effectiveness of physics in mathematics". In Fokas, A.S. (ed.). Highlights of Mathematical Physics. American Mathematical Society. pp. 25–38. ISBN 0-8218-3223-9. OCLC 50164838.
  • Further reading[edit]

    • Sundar Sarukkai (10 February 2005). "Revisiting the 'unreasonable effectiveness' of mathematics". Current Science. 88 (3): 415–423. JSTOR 24110208.
  • Kasman, Alex (April 2003). "Unreasonable Effectiveness". Math Horizons Magazine. 10 (4): 29–31. doi:10.1080/10724117.2003.12023669. S2CID 218542870. Archived from the original on 2010-06-26. Retrieved 2010-09-30., a piece of "mathematical fiction."
  • Colyvan, Mark (Spring 2015). "Indispensability Arguments in the Philosophy of Mathematics". In Zalta, Edward N. (ed.). Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University. Archived from the original on 2011-05-24. Retrieved 2011-02-17.
  • Bangu, Sorin (2012). The Applicability of Mathematics in Science: Indispensability and Ontology. New Directions in the Philosophy of Science. London: Plagrave MacMillan. ISBN 978-0230285200.
  • Wolchover, Natalie (9 December 2019). "Why the Laws of Physics Are Inevitable". Quanta Magazine. Archived from the original on 12 December 2019. Retrieved 12 December 2019.
  • Mathematical drama from Stanford University

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=The_Unreasonable_Effectiveness_of_Mathematics_in_the_Natural_Sciences&oldid=1225989235"

    Categories: 
    Books about philosophy of mathematics
    1960 in science
    1960 documents
    Works originally published in American magazines
    Works originally published in science and technology magazines
    Books about philosophy of physics
    Thought experiments in physics
    Hidden categories: 
    Articles with short description
    Short description is different from Wikidata
    Articles needing additional references from April 2022
    All articles needing additional references
    Wikipedia articles needing clarification from March 2018
    Wikipedia articles needing clarification from October 2023
     



    This page was last edited on 27 May 2024, at 23:11 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki