Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Construction  



1.1  Group generators  





1.2  Hilbert space  







2 Isomorphism  





3 Discrete subgroup  





4 See also  





5 References  














Theta representation







 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Inmathematics, the theta representation is a particular representation of the Heisenberg groupofquantum mechanics. It gains its name from the fact that the Jacobi theta function is invariant under the action of a discrete subgroup of the Heisenberg group. The representation was popularized by David Mumford.

Construction[edit]

The theta representation is a representation of the continuous Heisenberg group over the field of the real numbers. In this representation, the group elements act on a particular Hilbert space. The construction below proceeds first by defining operators that correspond to the Heisenberg group generators. Next, the Hilbert space on which these act is defined, followed by a demonstration of the isomorphism to the usual representations.

Group generators[edit]

Let f(z) be a holomorphic function, let a and bbereal numbers, and let be an arbitrary fixed complex number in the upper half-plane; that is, so that the imaginary part of is positive. Define the operators Sa and Tb such that they act on holomorphic functions as

and

It can be seen that each operator generates a one-parameter subgroup:

and

However, S and T do not commute:

Thus we see that S and T together with a unitary phase form a nilpotent Lie group, the (continuous real) Heisenberg group, parametrizable as where U(1) is the unitary group.

A general group element then acts on a holomorphic function f(z) as

where is the centerofH, the commutator subgroup . The parameter on serves only to remind that every different value of gives rise to a different representation of the action of the group.

Hilbert space[edit]

The action of the group elements is unitary and irreducible on a certain Hilbert space of functions. For a fixed value of τ, define a norm on entire functions of the complex planeas

Here, is the imaginary part of and the domain of integration is the entire complex plane.


Mumford sets the norm as , but in this way is not unitary.

Let be the set of entire functions f with finite norm. The subscript is used only to indicate that the space depends on the choice of parameter . This forms a Hilbert space. The action of given above is unitary on , that is, preserves the norm on this space. Finally, the action of onisirreducible.

This norm is closely related to that used to define Segal–Bargmann space[citation needed].

Isomorphism[edit]

The above theta representation of the Heisenberg group is isomorphic to the canonical Weyl representation of the Heisenberg group. In particular, this implies that and are isomorphicasH-modules. Let

stand for a general group element of In the canonical Weyl representation, for every real number h, there is a representation acting on as

for and

Here, hisPlanck's constant. Each such representation is unitarily inequivalent. The corresponding theta representation is:

Discrete subgroup[edit]

Define the subgroup as

The Jacobi theta function is defined as

It is an entire functionofz that is invariant under This follows from the properties of the theta function:

and

when a and b are integers. It can be shown that the Jacobi theta is the unique such function.

See also[edit]

References[edit]


Retrieved from "https://en.wikipedia.org/w/index.php?title=Theta_representation&oldid=1224495499"

Categories: 
Elliptic functions
Theta functions
Lie groups
Mathematical quantization
Hidden categories: 
All articles with unsourced statements
Articles with unsourced statements from July 2014
Pages that use a deprecated format of the math tags
 



This page was last edited on 18 May 2024, at 19:30 (UTC).

Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



Privacy policy

About Wikipedia

Disclaimers

Contact Wikipedia

Code of Conduct

Developers

Statistics

Cookie statement

Mobile view



Wikimedia Foundation
Powered by MediaWiki