Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Timeline  





2 Overview of the most important mathematicians and discoveries  



2.1  Hellenic mathematicians  







3 Straightedge and compass constructions  



3.1  Algebra  







4 See also  





5 References  














Timeline of ancient Greek mathematicians






Emiliàn e rumagnòl
Русский
Türkçe
 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


This is a timeline of mathematiciansinancient Greece.

Timeline[edit]

Historians traditionally place the beginning of Greek mathematics proper to the age of Thales of Miletus (ca. 624–548 BC), which is indicated by the green line at 600 BC. The orange line at 300 BC indicates the approximate year in which Euclid's Elements was first published. The red line at 300 AD passes through Pappus of Alexandria (c. 290 – c. 350 AD), who was one of the last great Greek mathematiciansoflate antiquity. Note that the solid thick black line is at year zero, which is a year that does not exist in the Anno Domini (AD) calendar year system


Simplicius of CiliciaEutocius of AscalonAnicius Manlius Severinus BoethiusAnthemius of TrallesMarinus of NeapolisDomninus of LarissaProclusHypatiaTheon of AlexandriaSerenus of AntinoeiaPappus of AlexandriaSporus of NicaeaPorphyry (philosopher)DiophantusPtolemyTheon of SmyrnaMenelaus of AlexandriaNicomachusHero of AlexandriaCleomedesGeminusPosidoniusZeno of SidonTheodosius of BithyniaPerseus (geometer)HypsiclesHipparchusZenodorus (mathematician)Diocles (mathematician)DionysodorusApollonius of PergaEratosthenesPhilonConon of SamosChrysippusArchimedesAristarchus of SamosEuclidAutolycus of PitaneCallippusAristaeus the ElderMenaechmusDinostratusXenocratesEudoxus of CnidusThymaridasTheaetetus (mathematician)ArchytasBryson of HeracleaDemocritusHippiasTheodorus of CyreneHippocrates of ChiosOenopidesZeno of EleaAnaxagorasHippasusPythagorasThales of Miletus

The mathematician Heliodorus of Larissa is not listed due to the uncertainty of when he lived, which was possibly during the 3rd century AD, after Ptolemy.

Overview of the most important mathematicians and discoveries[edit]

Of these mathematicians, those whose work stands out include:

Hellenic mathematicians[edit]

The conquests of Alexander the Great around c. 330 BC led to Greek culture being spread around much of the Mediterranean region, especially in Alexandria, Egypt. This is why the Hellenistic period of Greek mathematics is typically considered as beginning in the 4th century BC. During the Hellenistic period, many people living in those parts of the Mediterranean region subject to Greek influence ended up adopting the Greek language and sometimes also Greek culture. Consequently, some of the Greek mathematicians from this period may not have been "ethnically Greek" with respect to the modern Western notion of ethnicity, which is much more rigid than most other notions of ethnicity that existed in the Mediterranean region at the time. Ptolemy, for example, was said to have originated from Upper Egypt, which is far South of Alexandria, Egypt. Regardless, their contemporaries considered them Greek.

Straightedge and compass constructions[edit]

Creating a regular hexagon with a straightedge and compass

For the most part, straightedge and compass constructions dominated ancient Greek mathematics and most theorems and results were stated and proved in terms of geometry. These proofs involved a straightedge (such as that formed by a taut rope), which was used to construct lines, and a compass, which was used to construct circles. The straightedge is an idealized ruler that can draw arbitrarily long lines but (unlike modern rulers) it has no markings on it. A compass can draw a circle starting from two given points: the center and a point on the circle. A taut rope can be used to physically construct both lines (since it forms a straightedge) and circles (by rotating the taut rope around a point).

Geometric constructions using lines and circles were also used outside of the Mediterranean region. The Shulba Sutras from the Vedic periodofIndian mathematics, for instance, contains geometric instructions on how to physically construct a (quality) fire-altar by using a taut rope as a straightedge. These alters could have various shapes but for theological reasons, they were all required to have the same area. This consequently required a high precision construction along with (written) instructions on how to geometrically construct such alters with the tools that were most widely available throughout the Indian subcontinent (and elsewhere) at the time. Ancient Greek mathematicians went one step further by axiomatizing plane geometry in such a way that straightedge and compass constructions became mathematical proofs. Euclid's Elements was the culmination of this effort and for over two thousand years, even as late as the 19th century, it remained the "standard text" on mathematics throughout the Mediterranean region (including Europe and the Middle East), and later also in North and South America after European colonization.

Algebra[edit]

Ancient Greek mathematicians are known to have solved specific instances of polynomial equations with the use of straightedge and compass constructions, which simultaneously gave a geometric proof of the solution's correctness. Once a construction was completed, the answer could be found by measuring the length of a certain line segment (or possibly some other quantity). A quantity multiplied by itself, such as for example, would often be constructed as a literal square with sides of length which is why the second power "" is referred to as " squared" in ordinary spoken language. Thus problems that would today be considered "algebra problems" were also solved by ancient Greek mathematicians, although not in full generality. A complete guide to systematically solving low-order polynomials equations for an unknown quantity (instead of just specific instances of such problems) would not appear until The Compendious Book on Calculation by Completion and BalancingbyMuhammad ibn Musa al-Khwarizmi, who used Greek geometry to "prove the correctness" of the solutions that were given in the treatise. However, this treatise was entirely rhetorical (meaning that everything, including numbers, was written using words structured in ordinary sentences) and did not have any "algebraic symbols" that are today associated with algebra problems – not even the syncopated algebra that appeared in Arithmetica.

See also[edit]

References[edit]

  1. ^ Boyer, Carl B.; Merzbach, Uta C. (2011), A History of Mathematics (3rd ed.), Hoboken, New Jersey: John Wiley & Sons, p. 43, ISBN 978-0-470-52548-7
  • ^ Weyl 1952, p. 74.
  • ^ Calinger, Ronald (1982). Classics of Mathematics. Oak Park, Illinois: Moore Publishing Company, Inc. p. 75. ISBN 0-935610-13-8.
  • ^ Draper, John William (2007) [1874]. "History of the Conflict Between Religion and Science". In Joshi, S. T. (ed.). The Agnostic Reader. Prometheus. pp. 172–173. ISBN 978-1-59102-533-7.
  • ^ Bruno, Leonard C. (2003) [1999]. Math and Mathematicians: The History of Math Discoveries Around the World. Baker, Lawrence W. Detroit, Mich.: U X L. pp. 125. ISBN 978-0-7876-3813-9. OCLC 41497065.
  • ^ John M. Henshaw (10 September 2014). An Equation for Every Occasion: Fifty-Two Formulas and Why They Matter. JHU Press. p. 68. ISBN 978-1-4214-1492-8. Archimedes is on most lists of the greatest mathematicians of all time and is considered the greatest mathematician of antiquity.
  • ^ Hans Niels Jahnke. A History of Analysis. American Mathematical Soc. p. 21. ISBN 978-0-8218-9050-9. Archimedes was the greatest mathematician of antiquity and one of the greatest of all times
  • ^ O'Connor, J.J.; Robertson, E.F. (February 1996). "A history of calculus". University of St Andrews. Archived from the original on 15 July 2007. Retrieved 7 August 2007.
  • ^ C. M. Linton (2004). From Eudoxus to Einstein: a history of mathematical astronomy. Cambridge University Press. p. 52. ISBN 978-0-521-82750-8.

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=Timeline_of_ancient_Greek_mathematicians&oldid=1222623360"

    Categories: 
    Ancient Greek mathematicians
    Greek mathematics
    History of geometry
    History of mathematics
    Mathematics timelines
    Hidden categories: 
    Pages using the EasyTimeline extension
    Use dmy dates from July 2021
    Articles with short description
    Short description is different from Wikidata
    Pages displaying wikidata descriptions as a fallback via Module:Annotated link
     



    This page was last edited on 7 May 2024, at 00:06 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki