Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Composition  



1.1  Tumorigenic agents  







2 Safety  





3 See also  





4 References  














Tobacco smoke






العربية
Čeština
Deutsch
Polski
Tiếng Vit
 
 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Tobacco smoke being released from a lit cigarette

Tobacco smoke is a sooty aerosol produced by the incomplete combustionoftobacco during the smokingofcigarettes and other tobacco products. Temperatures in burning cigarettes range from about 400 °C between puffs to about 900 °C during a puff. During the burning of the cigarette tobacco (itself a complex mixture), thousands of chemical substances are generated by combustion, distillation, pyrolysis and pyrosynthesis.[1][2] Tobacco smoke is used as a fumigant and inhalant.

Composition[edit]

The particles in tobacco smoke are liquid aerosol droplets (about 20% water), with a mass median aerodynamic diameter (MMAD) that is submicrometer (and thus, fairly "lung-respirable" by humans). The droplets are present in high concentrations (some estimates are as high as 1010 droplets per cm3).

Tobacco smoke may be grouped into a particulate phase (trapped on a glass-fiber pad, and termed "TPM" (total particulate matter)) and a gas/vapor phase (which passes through such a glass-fiber pad). "Tar" is mathematically determined by subtracting the weight of the nicotine and water from the TPM. However, several components of tobacco smoke (e.g., hydrogen cyanide, formaldehyde, phenanthrene, and pyrene) do not fit neatly into this rather arbitrary classification, because they are distributed among the solid, liquid and gaseous phases.[1]

Tobacco smoke contains a number of toxicologically significant chemicals and groups of chemicals, including polycyclic aromatic hydrocarbons (benzopyrene), tobacco-specific nitrosamines (NNK, NNN), aldehydes (acrolein, formaldehyde), carbon monoxide, hydrogen cyanide, nitrogen oxides (nitrogen dioxide), benzene, toluene, phenols (phenol, cresol), aromatic amines (nicotine, ABP (4-aminobiphenyl)), and harmala alkaloids. The radioactive element polonium-210 is also known to occur in tobacco smoke.[1] The chemical composition of smoke depends on puff frequency, intensity, volume, and duration at different stages of cigarette consumption.[3]

Between 1933 and the late 1940s, the yields from an average cigarette varied from 33 to 49 mg "tar" and from less than 1 to 3 mg nicotine. In the 1960s and 1970s, the average yield from cigarettes in Western Europe and the USA was around 16 mg tar and 1.5 mg nicotine per cigarette. Current average levels are lower.[4] This has been achieved in a variety of ways including use of selected strains of tobacco plant, changes in agricultural and curing procedures, use of reconstituted sheets (reprocessed tobacco leaf wastes), incorporation of tobacco stalks, reduction of the amount of tobacco needed to fill a cigarette by expanding it (like puffed wheat) to increase its "filling power", and by the use of filters and high-porosity wrapping papers.[5] The development of lower "tar" and nicotine cigarettes has tended to yield products that lacked the taste components to which the smoker had become accustomed. In order to keep such products acceptable to the consumer, the manufacturers reconstitute aroma or flavor.[3]

Tobacco polyphenols (e. g., caffeic acid, chlorogenic acid, scopoletin, rutin) determine the taste and quality of the smoke. Freshly cured tobacco leaf is unfit for use because of its pungent and irritating smoke. After fermentation and aging, the leaf delivers mild and aromatic smoke.[6]

Tumorigenic agents[edit]

Tumorigenic agents in tobacco and tobacco smoke
Compounds In processed tobacco, per gram In mainstream smoke, per cigarette IARC evaluation of evidence of carcinogenicity
In laboratory animals In humans
Polycyclic aromatic hydrocarbons
Benz(a)anthracene   20–70 ng sufficient  
Benzo(b)fluoranthene   4–22 ng sufficient  
Benzo(j)fluoranthene   6–21 ng sufficient  
Benzo(k)fluoranthene   6–12 ng sufficient  
Benzo(a)pyrene 0.1–90 ng 20–40 ng sufficient probable
Chrysene   40–60 ng sufficient  
Dibenz(a,h)anthracene   ng sufficient  
Dibenzo(a,i)pyrene   1.7–3.2 ng sufficient  
Dibenzo(a,l)pyrene   present sufficient  
Indeno(1,2,3-c,d)pyrene   4–20 ng sufficient  
5-Methylchrysene   0.6 ng sufficient  
Aza-arenes
Quinoline 1–2 μg      
Dibenz(a,h)acridine   0.1 ng sufficient  
Dibenz(a,j)acridine   3–10 ng sufficient  
7H-Dibenzo(c,g)carbazole   0.7 ng sufficient  
N-Nitrosamines
N-Nitrosodimethylamine 0–215 ng 0.1–180 ng sufficient  
N-Nitrosoethylmethylamine   3–13 ng sufficient  
N-Nitrosodiethylamine   0–25 ng sufficient  
N-Nitrosonornicotine 0.3–89 μg 0.12–3.7 μg sufficient  
4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone 0.2–7 μg 0.08–0.77 μg sufficient  
N-Nitrosoanabasine 0.01–1.9 μg 0.14–4.6 μg limited  
N-Nitrosomorpholine 0–690 ng   sufficient  
Aromatic amines
2-Toluidine   30–200 ng sufficient inadequate
2-Naphthylamine   1–22 ng sufficient sufficient
4-Aminobiphenyl   2–5 ng sufficient sufficient
Aldehydes
Formaldehyde 1.6–7.4 μg 70–100 μg sufficient  
Acetaldehyde 1.4–7.4 μg 18–1400 μg sufficient  
Crotonaldehyde 0.2–2.4 μg 10–20 μg    
Miscellaneous organic compounds
Benzene   12–48 μg sufficient sufficient
Acrylonitrile   3.2–15 μg sufficient limited
1,1-Dimethylhydrazine 60–147 μg   sufficient  
2-Nitropropane   0.73–1.21 μg sufficient  
Ethyl carbamate 310–375 ng 20–38 ng sufficient  
Vinyl chloride   1–16 ng sufficient sufficient
Inorganic compounds
Hydrazine 14–51 ng 24–43 ng sufficient inadequate
Arsenic 500–900 ng 40–120 ng inadequate sufficient
Nickel 2000–6000 ng 0–600 ng sufficient limited
Chromium 1000–2000 ng 4–70 ng sufficient sufficient
Cadmium 1300–1600 ng 41–62 ng sufficient limited
Lead 8–10 μg 35–85 ng sufficient inadequate
Polonium-210 0.2–1.2 pCi 0.03–1.0 pCi sufficient sufficient

Safety[edit]

Tobacco smoke, besides being an irritant and significant indoor air pollutant, is known to cause lung cancer, heart disease, chronic obstructive pulmonary disease (COPD), emphysema, and other serious diseases in smokers (and in non-smokers as well). The actual mechanisms by which smoking can cause so many diseases remain largely unknown. Many attempts have been made to produce lung cancer in animals exposed to tobacco smoke by the inhalation route, without success. It is only by collecting the "tar" and repeatedly painting this on to mice that tumors are produced, and these tumors are very different from those tumors exhibited by smokers.[1] Tobacco smoke is associated with an increased risk of developing respiratory conditions such as bronchitis, pneumonia, and asthma. Tobacco smoke aerosols generated at temperatures below 400 °C did not test positive in the Ames assay.[7]

In spite of all changes in cigarette design and manufacturing since the 1960s, the use of filters and "light" cigarettes has neither decreased the nicotine intake per cigarette, nor has it lowered the incidence of lung cancers (NCI, 2001; IARC 83, 2004; U.S. Surgeon General, 2004).[8] The shift over the years from higher- to lower-yield cigarettes may explain the change in the pathology of lung cancer. That is, the percentage of lung cancers that are adenocarcinomas has increased, while the percentage of squamous cell cancers has decreased. The change in tumor type is believed to reflect the higher nitrosamine delivery of lower-yield cigarettes and the increased depth or volume of inhalation of lower-yield cigarettes to compensate for lower level concentrations of nicotine in the smoke.[9]

In the United States, lung cancer incidence and mortality rates are particularly high among African American men. Lung cancer tends to be most common in developed countries, particularly in North America and Europe, and less common in developing countries, particularly in Africa and South America.[8][clarification needed]

See also[edit]

References[edit]

  1. ^ a b c d Robert Kapp (2005), "Tobacco Smoke", Encyclopedia of Toxicology, vol. 4 (2nd ed.), Elsevier, pp. 200–202, ISBN 978-0-12-745354-5
  • ^ Ken Podraza (29–30 October 2001), Basic Principles of Cigarette Design and Function (PDF), Philip Morris USA
  • ^ a b The Health Consequences of Smoking: The Changing Cigarette (PDF), U.S. Dept. of Health and Human Services, p. 49
  • ^ K. Rothwell; et al. (1999), Health effects of interactions between tobacco use and exposure to other agents, Environmental Health Criteria, World Health Organization
  • ^ Michael A. H. Russell (1977), "Smoking Problems: An Overview", in Murray E. Jarvik; Joseph W. Cullen; Ellen R. Gritz; Thomas M. Vogt; Louis Jolyon West (eds.), Research on Smoking Behavior (PDF), NIDA Research Monograph, pp. 13–34, archived from the original (PDF) on 2015-07-23
  • ^ T. C. Tso (2007), "Tobacco", Ullmann's Encyclopedia of Industrial Chemistry (7th ed.), Wiley, pp. 1–26, doi:10.1002/14356007.a27_123, ISBN 978-3527306732
  • ^ C Lynn Humbertson (2005), "Tobacco", in Philip Wexler (ed.), Encyclopedia of Toxicology, vol. 4 (2nd ed.), Elsevier, pp. 197–200, ISBN 978-0-12-745354-5
  • ^ a b Anthony J. Alberg; Jonathan M. Samet (2010), "Epidemiology of Lung Cancer", in Robert J. Mason; V. Courtney Broaddus; Thomas R. Martin; Talmadge E. King Jr.; Dean E. Schraufnagel; John F. Murray; Jay A. Nadel (eds.), Murray and Nadel's Textbook of Respiratory Medicine, vol. 1 (5th ed.), Saunders, ISBN 978-1-4160-4710-0
  • ^ Neal L. Benowitz; Paul G. Brunetta (2010), "Smoking Hazards and Cessation", in Robert J. Mason; V. Courtney Broaddus; Thomas R. Martin; Talmadge E. King Jr.; Dean E. Schraufnagel; John F. Murray; Jay A. Nadel (eds.), Murray and Nadel's Textbook of Respiratory Medicine, vol. 1 (5th ed.), Saunders, ISBN 978-1-4160-4710-0

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=Tobacco_smoke&oldid=1229126281"

    Categories: 
    Aerosols
    Tobacco smoking
    Tobacco
    Toxicology
    Smoke
    Hidden categories: 
    Articles needing additional references from February 2022
    All articles needing additional references
    Articles with short description
    Short description matches Wikidata
    Wikipedia articles needing clarification from April 2021
    Articles with GND identifiers
    Articles with NKC identifiers
     



    This page was last edited on 15 June 2024, at 01:14 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki