Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Definitions  





2 Coefficient of traction  



2.1  Factors affecting coefficient of traction  





2.2  Traction coefficient in engineering design  







3 See also  





4 References  














Traction (mechanics)






العربية
Català
Dansk
Deutsch
Español
Euskara
فارسی
ि
Bahasa Indonesia
Italiano

Norsk bokmål
Português
Simple English
Svenska
 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 




In other projects  



Wikimedia Commons
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Traction, traction forceortractive force is a force used to generate motion between a body and a tangential surface, through the use of either dry frictionorshear force.[1][2][3][4] It has important applications in vehicles, as in tractive effort.

Traction can also refer to the maximum tractive force between a body and a surface, as limited by available friction; when this is the case, traction is often expressed as the ratio of the maximum tractive force to the normal force and is termed the coefficient of traction (similar to coefficient of friction). It is the force which makes an object move over the surface by overcoming all the resisting forces like friction, normal loads(load acting on the tiers in negative 'Z' axis), air resistance, rolling resistance, etc.

Definitions[edit]

Traction can be defined as:

a physical process in which a tangential force is transmitted across an interface between two bodies through dry friction or an intervening fluid film resulting in motion, stoppage or the transmission of power.

— Mechanical Wear Fundamentals and Testing, Raymond George Bayer[5]

In vehicle dynamics, tractive force is closely related to the terms tractive effort and drawbar pull, though all three terms have different definitions.

Coefficient of traction[edit]

Diagram of the longitudinal coefficient of adhesion (fx) in function of the speed and the weather conditions for the asphalt:
A) dry asphalt
B) Asphalt drainage in wet conditions
C) Asphalt in wet conditions
D) Snow
E) Ice
Change cross tack (Fy) average during the seasons (represented numerically from 1 to 12) and with different road surfaces.
A) Hot Rolled Asphalt
B) Gravel
C) Quartzite
D) Conglomerate cement
E) mastic asphalt
F) Gravel sedimentary (unbound)

The coefficient of traction is defined as the usable force for traction divided by the weight on the running gear (wheels, tracks etc.)[6][7] i.e.:
     usable traction = coefficient of traction × normal force.

Factors affecting coefficient of traction[edit]

Traction between two surfaces depends on several factors:

Traction coefficient in engineering design[edit]

In the design of wheeled or tracked vehicles, high traction between wheel and ground is more desirable than low traction, as it allows for higher acceleration (including cornering and braking) without wheel slippage. One notable exception is in the motorsport technique of drifting, in which rear-wheel traction is purposely lost during high speed cornering.

Other designs dramatically increase surface area to provide more traction than wheels can, for example in continuous track and half-track vehicles.[citation needed] A tank or similar tracked vehicle uses tracks to reduce the pressure on the areas of contact. A 70-ton M1A2 would sink to the point of high centering if it used round tires. The tracks spread the 70 tons over a much larger area of contact than tires would and allow the tank to travel over much softer land.

In some applications, there is a complicated set of trade-offs in choosing materials. For example, soft rubbers often provide better traction but also wear faster and have higher losses when flexed—thus reducing efficiency. Choices in material selection may have a dramatic effect. For example: tires used for track racing cars may have a life of 200 km, while those used on heavy trucks may have a life approaching 100,000 km. The truck tires have less traction and also thicker rubber.

Traction also varies with contaminants. A layer of water in the contact patch can cause a substantial loss of traction. This is one reason for grooves and siping of automotive tires.

The traction of trucks, agricultural tractors, wheeled military vehicles, etc. when driving on soft and/or slippery ground has been found to improve significantly by use of Tire Pressure Control Systems (TPCS). A TPCS makes it possible to reduce and later restore the tire pressure during continuous vehicle operation. Increasing traction by use of a TPCS also reduces tire wear and ride vibration.[9]

See also[edit]

  • Equilibrium tide
  • Friction
  • Force (physics)
  • Karl A. Grosch
  • Rail adhesion
  • Road slipperiness
  • Sandbox (locomotive)
  • Tribology
  • Weight transfer
  • References[edit]

    1. ^ Laughery, Sean; Gerhart, Grant; Muench., Paul (2000), Evaluating Vehicle Mobility Using Bekker's Equations (PDF), U.S. Army TARDEC, archived (PDF) from the original on July 5, 2019
  • ^ Burch, Deryl (1997). "Usable Power". Estimating Excavation. Craftsman Book Co. p. 215. ISBN 0-934041-96-2.
  • ^ "Friction". hyperphysics.phy-astr.gsu.edu. Retrieved 20 April 2018.
  • ^ Abhishek. "Metro Train Simulation". metrotrainsimulation.com. Retrieved 20 April 2018.
  • ^ Bayer, Raymond George (22 April 2004). "Terminology and Classifications". Mechanical Wear Fundamentals and Testing. CRC Press. p. 3. ISBN 0-8247-4620-1.
  • ^ Schexnayder, Clifford J.; Mayo, Richard (2003). Construction Management Fundamentals. McGraw-Hill Professional. p. 346. ISBN 0-07-292200-1.
  • ^ Wong, Jo Yung (20 March 2001). "4.1.3 Coefficient of Traction". Theory of ground vehicles. p. 317. ISBN 0-471-35461-9.
  • ^ J670 Vehicle Dynamics Terminology, SAE.
  • ^ Munro, Ron; MacCulloch, Frank (February 2008). "Tyre Pressure Control on Timber Haulage Vehicles: Some observations on a trial in Highland, Scotland" (PDF). ROADEX III Northern Periphery. Retrieved 20 April 2018.

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=Traction_(mechanics)&oldid=1188468620"

    Categories: 
    Force
    Vehicle technology
    Mechanics
    Hidden categories: 
    Articles with short description
    Short description is different from Wikidata
    Articles needing additional references from April 2009
    All articles needing additional references
    All articles with unsourced statements
    Articles with unsourced statements from July 2017
     



    This page was last edited on 5 December 2023, at 17:01 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki