Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Nomenclature  





2 Experimental evidence  





3 Tribovoltaic effect at different interfaces  





4 References  














Tribovoltaic effect







Add links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


The tribovoltaic effect is a type of triboelectric current where a direct-current (DC) current is generated by sliding a P-type semiconductor on top of a N-type semiconductor or a metal surface without the illumination of photons, which was firstly proposed by Wang et al.[1] in 2019 and later observed experimentally in 2020. When a P-type semiconductor slides over a N-type semiconductor, electron-hole pairs can be produced at the interface, which separate in the built-in electric field (contact potential difference) at the semiconductor interface, generating a DC current. Research has shown that the tribovoltaic effect can occur at various interfaces, such as metal-semiconductor interface,[2] P-N semiconductors interface,[3] metal-insulator-semiconductor interface,[4] metal-insulator-metal interface,[5] and liquid-semiconductor interface.[6][7] The tribovoltaic effect may find applications in the fields of energy harvesting and smart sensing.[3]

Nomenclature

[edit]

It has been suggested that the generation of tribo-current at the sliding PN junctionorSchottky junction is analogous to the generation of photo-current in the photovoltaic effect, and the only difference is that the energy for exciting the electron-hole pairs is different, so it was named “tribovoltaic effect” by Wang et al.[1]

Energy band diagram of the tribovoltaic effect

Experimental evidence

[edit]

The tribovoltaic effect was observed at both macro- and nano-scale. It was found that a direct current can be generated by sliding the N-type diamond coated tip over the P-type Si samples, and the direction of the tribo-current depends on the direction of the built-in electric field at the PN and Schottky junctions.

Tribovoltaic experiment

Tribovoltaic effect at different interfaces

[edit]

Metal-semiconductor interface. When a Pt-coated silicon atomic force microscopy (AFM) tip rubs on molybdenum disulfide (MoS2) surface, a DC current with a maximum density of 106 A/m2 is generated.[2] Similarly using a pure Pt tip to rub both p-type and N-type silicon samples, the current follows the contact potential.[3]

P-N semiconductors interface. When using a N-type silicon to rub with a P-type Si, a DC current from the P-type Si to the N-type silicon is produced, with the same direction as the built-in electric field at the PN junction.[8] Furthermore, when a N-type diamond-coated silicon tip is used to rub with the surfaces of N-type silicon and P-type Si, tribocurrent can be generated at the interfaces of N-type tip and P-type Si.[3]

Metal-insulator-semiconductor interface. When a conducting tip rubs with a silicon, the tribovoltaic effect can induce water molecules to form an oxide layer on the silicon surface, and the tribo-current decreases gradually with increasing the thickness of oxide layer.[4]

Metal-insulator-metal interface. The studies of DC output characteristics of Al-TiO2-Ti heterojunctions show that the open-circuit voltage increases with increasing the thickness of TiO2, while the short-circuit current first increases and then decreases. The experiments have revealed that the tribo-current is contributed by quantum tunneling, thermionic emission and trap-assisted transport.[5]

Liquid-semiconductor interface. The tribovoltaic effect can also occur at aqueous solution and solid semiconductor interface, in which the aqueous solution is considered as a liquid semiconductor.[9][10][11][12] The tribovoltaic effect at liquid-solid interface was also observed by Wang et al.[7][13]

References

[edit]
  1. ^ a b Wang, Zhong Lin; Wang, Aurelia Chi (2019). "On the origin of contact-electrification". Materials Today. 30: 34–51. doi:10.1016/j.mattod.2019.05.016. ISSN 1369-7021. S2CID 189987682.
  • ^ a b Liu, Jun; Goswami, Ankur; Jiang, Keren; Khan, Faheem; Kim, Seokbeom; McGee, Ryan; Li, Zhi; Hu, Zhiyu; Lee, Jungchul; Thundat, Thomas (2018). "Direct-current triboelectricity generation by a sliding Schottky nanocontact on MoS2 multilayers". Nature Nanotechnology. 13 (2): 112–116. doi:10.1038/s41565-017-0019-5. ISSN 1748-3387. PMID 29230042.
  • ^ a b c d Zheng, Mingli; Lin, Shiquan; Xu, Liang; Zhu, Laipan; Wang, Zhong Lin (2020). "Scanning Probing of the Tribovoltaic Effect at the Sliding Interface of Two Semiconductors". Advanced Materials. 32 (21): e2000928. Bibcode:2020AdM....3200928Z. doi:10.1002/adma.202000928. ISSN 0935-9648. PMID 32270901.
  • ^ a b Liu, Jun; Liu, Feifei; Bao, Rima; Jiang, Keren; Khan, Faheem; Li, Zhi; Peng, Huihui; Chen, James; Alodhayb, Abdullah; Thundat, Thomas (2019). "Scaled-up Direct-Current Generation in MoS 2 Multilayer-Based Moving Heterojunctions". ACS Applied Materials & Interfaces. 11 (38): 35404–35409. doi:10.1021/acsami.9b09851. ISSN 1944-8244. PMID 31476860.
  • ^ a b Benner, Matthew; Yang, Ruizhe; Lin, Leqi; Liu, Maomao; Li, Huamin; Liu, Jun (2022). "Mechanism of In-Plane and Out-of-Plane Tribovoltaic Direct-Current Transport with a Metal/Oxide/Metal Dynamic Heterojunction". ACS Applied Materials & Interfaces. 14 (2): 2968–2978. doi:10.1021/acsami.1c22438. ISSN 1944-8244. PMID 34990542.
  • ^ Zheng, Mingli; Lin, Shiquan; Zhu, Laipan; Tang, Zhen; Wang, Zhong Lin (2022). "Effects of Temperature on the Tribovoltaic Effect at Liquid-Solid Interfaces". Advanced Materials Interfaces. 9 (3). doi:10.1002/admi.202101757. ISSN 2196-7350.
  • ^ a b Zheng, Mingli; Lin, Shiquan; Tang, Zhen; Feng, Yawei; Wang, Zhong Lin (2021). "Photovoltaic effect and tribovoltaic effect at liquid-semiconductor interface". Nano Energy. 83: 105810. doi:10.1016/j.nanoen.2021.105810.
  • ^ Xu, Ran; Zhang, Qing; Wang, Jing Yuan; Liu, Di; Wang, Jie; Wang, Zhong Lin (2019). "Direct current triboelectric cell by sliding an n-type semiconductor on a p-type semiconductor". Nano Energy. 66: 104185. doi:10.1016/j.nanoen.2019.104185.
  • ^ Copeland, A. Wallace.; Black, Otis D.; Garrett, A. B. (1942). "The Photovoltaic Effect". Chemical Reviews. 31 (1): 177–226. doi:10.1021/cr60098a004. ISSN 0009-2665.
  • ^ Williams, F.; Nozik, A. J. (1984). "Solid-state perspectives of the photoelectrochemistry of semiconductor–electrolyte junctions". Nature. 312 (5989): 21–27. Bibcode:1984Natur.312...21W. doi:10.1038/312021a0. ISSN 1476-4687. S2CID 4350548.
  • ^ Lewis, Nathan S. (1998). "Progress in Understanding Electron-Transfer Reactions at Semiconductor/Liquid Interfaces". The Journal of Physical Chemistry B. 102 (25): 4843–4855. doi:10.1021/jp9803586. ISSN 1520-6106.
  • ^ Iqbal, Asif; Hossain, Md Sazzad; Bevan, Kirk H. (2016). "The role of relative rate constants in determining surface state phenomena at semiconductor–liquid interfaces". Physical Chemistry Chemical Physics. 18 (42): 29466–29477. Bibcode:2016PCCP...1829466I. doi:10.1039/C6CP04952D. ISSN 1463-9084. PMID 27738683.
  • ^ Lin, Shiquan; Chen, Xiangyu; Wang, Zhong Lin (2020). "The tribovoltaic effect and electron transfer at a liquid-semiconductor interface". Nano Energy. 76: 105070. doi:10.1016/j.nanoen.2020.105070. ISSN 2211-2855. S2CID 224872429.

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=Tribovoltaic_effect&oldid=1223140471"

    Categories: 
    Electrical phenomena
    Electrostatics
    Electricity
    Tribology
    Hidden categories: 
    Articles with short description
    Short description with empty Wikidata description
    Orphaned articles from April 2023
    All orphaned articles
     



    This page was last edited on 10 May 2024, at 04:42 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki