Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Production  





2 Applications  



2.1  Cement production  





2.2  Cosmetics and medicine  





2.3  Derivatives  





2.4  In the laboratory and in amateur photography  





2.5  In holography  





2.6  In electroless plating  





2.7  In ultrasonic testing  





2.8  In aluminium soldering  







3 Safety and regulation  



3.1  Allergic reactions  





3.2  Tumors  





3.3  Environmental toxicity  





3.4  Regulation  







4 See also  





5 References  














Triethanolamine






Azərbaycanca
تۆرکجه
Deutsch
Español
Esperanto
Euskara
فارسی
Français
Bahasa Indonesia
Italiano
Nederlands

Português
Română
Русский
Српски / srpski
Srpskohrvatski / српскохрватски
Suomi
Svenska

 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 




In other projects  



Wikimedia Commons
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Triethanolamine
Skeletal formula of triethanolamine
Ball-and-stick model of the triethanolamine molecule
Colorless liquid in a stoppered glass bottle
Names
Preferred IUPAC name

2,2′,2′′-Nitrilotri(ethan-1-ol)[1]

Other names
  • 2,2′,2′′-Nitrilotriethanol
  • Tris(2-hydroxyethyl)amine
  • Triethylolamine
  • 2,2′,2′′-Trihydroxytriethylamine
  • Trolamine
  • TEA
  • TELA
  • TEOA
  • Identifiers

    CAS Number

    3D model (JSmol)

    3DMet

    Beilstein Reference

    1699263
    ChEBI
    ChEMBL
    ChemSpider
    ECHA InfoCard 100.002.773 Edit this at Wikidata
    EC Number
    • 203-049-8
    KEGG
    MeSH Biafine

    PubChem CID

    RTECS number
    • KL9275000
    UNII

    CompTox Dashboard (EPA)

    • InChI=1S/C6H15NO3/c8-4-1-7(2-5-9)3-6-10/h8-10H,1-6H2 checkY

      Key: GSEJCLTVZPLZKY-UHFFFAOYSA-N checkY

    • OCCN(CCO)CCO

    Properties

    Chemical formula

    N(CH2CH2OH)3
    Molar mass 149.190 g·mol−1
    Appearance Colourless, viscous liquid
    Odor Ammoniacal
    Density 1.124 g/mL
    Melting point 21.60 °C; 70.88 °F; 294.75 K
    Boiling point 335.40 °C; 635.72 °F; 608.55 K

    Solubility in water

    miscible
    log P −0.988
    Vapor pressure 1 Pa (at 20 °C)
    Acidity (pKa) 7.74[2]
    UV-vismax) 280 nm

    Refractive index (nD)

    1.485
    Thermochemistry

    Heat capacity (C)

    389 J K−1 mol−1

    Std enthalpy of
    formation
    fH298)

    −665.7 – −662.7 kJ mol−1

    Std enthalpy of
    combustion
    cH298)

    −3.8421 – −3.8391 MJ mol−1
    Pharmacology

    ATC code

    D03AX12 (WHO)
    Hazards
    GHS labelling:

    Pictograms

    GHS07: Exclamation mark

    Signal word

    Warning

    Hazard statements

    H319

    Precautionary statements

    P305+P351+P338
    NFPA 704 (fire diamond)
    NFPA 704 four-colored diamondHealth 2: Intense or continued but not chronic exposure could cause temporary incapacitation or possible residual injury. E.g. chloroformFlammability 1: Must be pre-heated before ignition can occur. Flash point over 93 °C (200 °F). E.g. canola oilInstability 0: Normally stable, even under fire exposure conditions, and is not reactive with water. E.g. liquid nitrogenSpecial hazards (white): no code
    2
    1
    0
    Flash point 179 °C (354 °F; 452 K)

    Autoignition
    temperature

    325 °C (617 °F; 598 K)
    Explosive limits 1.3–8.5%
    Lethal dose or concentration (LD, LC):

    LD50 (median dose)

    • 2.2 g/kg (oral, guinea pig)
  • 2.2 g/kg (oral, rabbit)
  • 5.53 g/kg (oral, rat)
  • 5.846 g/kg (oral, mouse)
  • 22.5 g/kg (dermal, rabbit)
  • Safety data sheet (SDS) hazard.com
    Related compounds

    Related alkanols

  • Dimethylethanolamine
  • Diethylethanolamine
  • Diethanolamine
  • N,N-Diisopropylaminoethanol
  • Methyl diethanolamine
  • Bis-tris methane
  • Related compounds

    Diethylhydroxylamine

    Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

    checkY verify (what is checkY☒N ?)

    Infobox references

    Triethanolamine, or TEOA, is an organic compound with the chemical formula N(CH2CH2OH)3. It is a colourless, viscous liquid. It is both a tertiary amine and a triol. A triol is a molecule with three alcohol groups. Approximately 150,000 tonnes were produced in 1999.[3] It is a colourless compound although samples may appear yellow because of impurities.

    Production[edit]

    Triethanolamine is produced from the reaction of ethylene oxide with aqueous ammonia, also produced are ethanolamine and diethanolamine. The ratio of the products can be controlled by changing the stoichiometry of the reactants.[4]

    Applications[edit]

    Triethanolamine is used primarily in making surfactants, such as for emulsifier. It is a common ingredient in formulations used for both industrial and consumer products. The triethanolamine neutralizes fatty acids, adjusts and buffers the pH, and solubilizes oils and other ingredients that are not completely soluble in water. Triethanolammonium salts in some cases are more soluble than salts of alkali metals that might be used otherwise, and results in less alkaline products than would from using alkali metal hydroxides to form the salt. Some common products in which triethanolamine is found are sunscreen lotions, liquid laundry detergents, dishwashing liquids, general cleaners, hand sanitizers, polishes, metalworking fluids, paints, shaving cream and printing inks.[5]

    Cement production[edit]

    Triethanolamine is also used as organic additive (0.1 wt%) in the grinding of cement clinker. It facilitates the grinding process by preventing agglomeration and coating of the powder at the surface of balls and mill wall.[6]

    Cosmetics and medicine[edit]

    Various ear diseases and infections are treated with eardrops containing triethanolamine polypeptide oleate-condensate, such as Cerumenex in the United States. In pharmaceutics, triethanolamine is the active ingredient of some eardrops used to treat impacted earwax. It also serves as a pH balancer in many different cosmetic products, ranging from cleansing creams and milks, skin lotions, eye gels, moisturizers, shampoos, shaving foams, TEA is a fairly strong base: a 1% solution has a pH of approximately 10, whereas the pH of skin is less than pH 7, approximately 5.5−6.0. Cleansing milk–cream emulsions based on TEA are particularly good at removing makeup.

    Derivatives[edit]

    1. Amustaline
    2. Trolnitrate
    3. Trimustine

    In the laboratory and in amateur photography[edit]

    Another common use of TEA is as a complexing agent for aluminium ions in aqueous solutions. This reaction is often used to mask such ions before complexometric titrations with another chelating agent such as EDTA. TEA has also been used in photographic (silver halide) processing. It has been promoted as a useful alkali by amateur photographers.

    In holography[edit]

    TEA is used to provide a sensitivity boost to silver-halide-based holograms, and also as a swelling agent to color shift holograms. It is possible to get the sensitivity boost without color shift by rinsing out the TEA before squeegee and drying.[7]

    In electroless plating[edit]

    TEA is now commonly and very effectively used as a complexing agent in electroless plating.

    In ultrasonic testing[edit]

    2-3% in water TEA is used as an corrosion inhibitor (anti-rust) agent in immersion ultrasonic testing.

    In aluminium soldering[edit]

    Triethanolamine, diethanolamine and aminoethylethanolamine are major components of common liquid organic fluxes for the soldering of aluminium alloys using tin-zinc and other tin or lead-based soft solders.[8][9][10]

    Safety and regulation[edit]

    Allergic reactions[edit]

    A 1996 study found that triethanolamine (TEOA) occasionally causes contact allergy.[11] A 2001 study found TEOA in a sunscreen caused an allergic contact dermatitis.[12] A 2007 study found TEOA in ear drops caused a contact allergy.[13] Systemic and respiratory tract (RT) toxicity was analyzed for 28 days in a nose specific inhalation 2008 study in Wistar rats; TEOA seems to be less potent in regard to systemic toxicity and RT irritancy than diethanolamine (DEA). Exposure to TEOA resulted in focal inflammation, starting in single male animals from 20 mg/m3 concentrations.[14]

    A 2009 study stated that patch test reactions reveal a slight irritant potential instead of a true allergic response in several cases, and also indicated the risk of skin sensitization to TEOA seems to be very low.[15]

    Tumors[edit]

    Reports indicated that TEOA causes an increased incidence of tumor growth in the liver in female B6C3F1 mice, but not in male mice or in Fischer 344 rats.[16] A 2004 study concluded "TEOA may cause liver tumors in mice via a choline-depletion mode of action and that this effect is likely caused by the inhibition of choline uptake by cells."[16]

    Environmental toxicity[edit]

    A 2009 study found that TEOA has potential acute, sub-chronic and chronic toxicity properties in respect to aquatic species.[17]

    Regulation[edit]

    TEOA is listed under Schedule 3, part B of the Chemical Weapons Convention as it can be used in the manufacture of HN3 nitrogen mustard.

    See also[edit]

    References[edit]

    1. ^ "Front Matter". Nomenclature of Organic Chemistry : IUPAC Recommendations and Preferred Names 2013 (Blue Book). Cambridge: The Royal Society of Chemistry. 2014. pp. P001–P004. doi:10.1039/9781849733069-FP001. ISBN 978-0-85404-182-4.
  • ^ Simond, M. R. (2012). "Dissociation Constants of Protonated Amines in Water at Temperatures from 293.15 K to 343.15 K". Journal of Solution Chemistry. 41: 130. doi:10.1007/s10953-011-9790-3. S2CID 95755026.
  • ^ Frauenkron, Matthias; Melder, Johann-Peter; Ruider, Günther; Rossbacher, Roland; Höke, Hartmut. "Ethanolamines and Propanolamines". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. doi:10.1002/14356007.a10_001. ISBN 978-3527306732.
  • ^ Weissermel, Klaus; Arpe, Hans-Jürgen; Lindley, Charlet R.; Hawkins, Stephen (2003). "Chapter 7. Oxidation Products of Ethylene". Industrial Organic Chemistry. Wiley-VCH. pp. 159–161. ISBN 978-3-527-30578-0.
  • ^ Ashford, Robert D. (2011). Ashford's Dictionary of Industrial Chemicals (3rd ed.). Saltash, Cornwall: Wavelength Publications. p. 9252. ISBN 978-0-9522674-3-0.
  • ^ Sohoni, S.; Sridhar, R.; Mandal, G. (1991). "Effect of grinding aids on the fine grinding of limestone, quartz and portland cement clinker". Powder Technology. 67 (3): 277–286. doi:10.1016/0032-5910(91)80109-V.
  • ^ "Holoforum.org". Holoforum.org. Retrieved 2016-07-16.
  • ^ "Kapp Liquid Flux SDS" (PDF). kappalloy.com. Retrieved 9 April 2019.
  • ^ "Harris Stay-Clean Aluminum Flux SDS" (PDF). lincolnelectric.com. Retrieved 9 April 2019.
  • ^ "Superior #1260 Flux SDS" (PDF). superiorflux.com. Retrieved 9 April 2019.
  • ^ Hamilton, T. K.; Zug, K. A. (1996). "Triethanolamine allergy inadvertently discovered from a fluorescent marking pen". Am. J. Contact Dermat. 7 (3): 164–5. doi:10.1016/S1046-199X(96)90006-8. PMID 8957332.
  • ^ Chu, C. Y.; Sun, C. C. (2001). "Allergic contact dermatitis from triethanolamine in a sunscreen". Contact Dermatitis. 44 (1): 41–2. doi:10.1034/j.1600-0536.2001.440107-8.x. PMID 11156016. S2CID 7174704.
  • ^ Schmutz, J. L.; Barbaud, A.; Tréchot, P. (2007). "Contact allergy to triethanolamine in ear drops and shampoo". Ann. Dermatol. Venereol. 134 (1): 105. doi:10.1016/S0151-9638(07)89009-0. PMID 17384563.
  • ^ Gamer, A. O.; Rossbacher, R.; Kaufmann, W.; van Ravenzwaay, B. (2008). "The inhalation toxicity of di- and triethanolamine upon repeated exposure". Food Chem. Toxicol. 46 (6): 2173–2183. doi:10.1016/j.fct.2008.02.020. PMID 18420328.
  • ^ Lessmann, H.; Uter, W.; Schnuch, A.; Geier, J. (2009). "Skin sensitizing properties of the ethanolamines mono-, di-, and triethanolamine. Data analysis of a multicentre surveillance network (IVDK*) and review of the literature". Contact Dermatitis. 60 (5): 243–255. doi:10.1111/j.1600-0536.2009.01506.x. PMID 19397616.
  • ^ a b Stott, W. T.; Radtke, B. J.; Linscombe, V. A.; Mar, M. H.; Zeisel, S. H. (2004). "Evaluation of the potential of triethanolamine to alter hepatic choline levels in female B6C3F1 mice". Toxicol. Sci. 79 (2): 242–7. doi:10.1093/toxsci/kfh115. PMC 1592523. PMID 15056812.
  • ^ Libralato, G.; Volpi Ghirardini, A.; Avezzù, F. (2009). "Seawater ecotoxicity of monoethanolamine, diethanolamine and triethanolamine". J. Hazard. Mater. 176 (1–3): 535–9. doi:10.1016/j.jhazmat.2009.11.062. PMID 20022426.

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=Triethanolamine&oldid=1194233190"

    Categories: 
    Triols
    Tertiary amines
    Cosmetics chemicals
    Tripodal ligands
    Ethanolamines
    Concrete admixtures
    Hidden categories: 
    Articles without InChI source
    ECHA InfoCard ID from Wikidata
    Chembox having GHS data
    Articles containing unverified chemical infoboxes
    Chembox image size set
    Articles with short description
    Short description matches Wikidata
    Articles with GND identifiers
     



    This page was last edited on 7 January 2024, at 23:09 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki