Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Notation  





2 Examples  





3 Formulas  



3.1  Collinearities and concurrencies  





3.2  Parallel lines  





3.3  Angle between two lines  



3.3.1  Perpendicular lines  







3.4  Altitude  





3.5  Line in terms of distances from vertices  





3.6  Actual-distance trilinear coordinates  





3.7  Distance between two points  





3.8  Distance from a point to a line  





3.9  Quadratic curves  



3.9.1  Circumconics  





3.9.2  Inconics  







3.10  Cubic curves  







4 Conversions  



4.1  Between trilinear coordinates and distances from sidelines  





4.2  Between barycentric and trilinear coordinates  





4.3  Between Cartesian and trilinear coordinates  







5 See also  





6 References  





7 External links  














Trilinear coordinates






العربية
Deutsch
Español
Français

Italiano
עברית
Nederlands
Português
Română
Русский
Slovenščina
Suomi
Svenska
Українська

 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Ingeometry, the trilinear coordinates x : y : z of a point relative to a given triangle describe the relative directed distances from the three sidelines of the triangle. Trilinear coordinates are an example of homogeneous coordinates. The ratio x : y is the ratio of the perpendicular distances from the point to the sides (extended if necessary) opposite vertices A and B respectively; the ratio y : z is the ratio of the perpendicular distances from the point to the sidelines opposite vertices B and C respectively; and likewise for z : x and vertices C and A.

In the diagram at right, the trilinear coordinates of the indicated interior point are the actual distances (a', b', c'), or equivalently in ratio form, ka' : kb' : kc' for any positive constant k. If a point is on a sideline of the reference triangle, its corresponding trilinear coordinate is 0. If an exterior point is on the opposite side of a sideline from the interior of the triangle, its trilinear coordinate associated with that sideline is negative. It is impossible for all three trilinear coordinates to be non-positive.

Notation

[edit]

The ratio notation for trilinear coordinates is often used in preference to the ordered triple notation with the latter reserved for triples of directed distances relative to a specific triangle. The trilinear coordinates can be rescaled by any arbitrary value without affecting their ratio. The bracketed, comma-separated triple notation can cause confusion because conventionally this represents a different triple than e.g. but these equivalent ratios represent the same point.

Examples

[edit]

The trilinear coordinates of the incenter of a triangle ABC are 1 : 1 : 1; that is, the (directed) distances from the incenter to the sidelines BC, CA, AB are proportional to the actual distances denoted by (r, r, r), where r is the inradius of ABC. Given side lengths a, b, c we have:

Name; Symbol Trilinear coordinates Description
Vertices A Points at the corners of the triangle
B
C
Incenter I Intersection of the internal angle bisectors; Center of the triangle's inscribed circle
Excenters IA Intersections of the angle bisectors (two external, one internal); Centers of the triangle's three escribed circles
IB
IC
Centroid G Intersection of the medians; Center of mass of a uniform triangular lamina
Circumcenter O Intersection of the perpendicular bisectors of the sides; Center of the triangle's circumscribed circle
Orthocenter H Intersection of the altitudes
Nine-point center N Center of the circle passing through the midpoint of each side, the foot of each altitude, and the midpoint between the orthocenter and each vertex
Symmedian point K Intersection of the symmedians – the reflection of each median about the corresponding angle bisector

Note that, in general, the incenter is not the same as the centroid; the centroid has barycentric coordinates 1 : 1 : 1 (these being proportional to actual signed areas of the triangles BGC, △CGA, △AGB, where G = centroid.)

The midpoint of, for example, side BC has trilinear coordinates in actual sideline distances for triangle area Δ, which in arbitrarily specified relative distances simplifies to 0 : ca : ab. The coordinates in actual sideline distances of the foot of the altitude from AtoBC are which in purely relative distances simplifies to 0 : cos C : cos B.[1]: p. 96 

Formulas

[edit]

Collinearities and concurrencies

[edit]

Trilinear coordinates enable many algebraic methods in triangle geometry. For example, three points

are collinear if and only if the determinant

equals zero. Thus if x : y : z is a variable point, the equation of a line through the points P and UisD = 0.[1]: p. 23  From this, every straight line has a linear equation homogeneous in x, y, z. Every equation of the form in real coefficients is a real straight line of finite points unless l : m : n is proportional to a : b : c, the side lengths, in which case we have the locus of points at infinity.[1]: p. 40 

The dual of this proposition is that the lines

concur in a point (α, β, γ) if and only if D = 0.[1]: p. 28 

Also, if the actual directed distances are used when evaluating the determinant of D, then the area of triangle PUXisKD, where (and where Δ is the area of triangle ABC, as above) if triangle PUX has the same orientation (clockwise or counterclockwise) as ABC, and otherwise.

Parallel lines

[edit]

Two lines with trilinear equations and are parallel if and only if[1]: p. 98, #xi 

where a, b, c are the side lengths.

Angle between two lines

[edit]

The tangents of the angles between two lines with trilinear equations and are given by[1]: p.50 

Perpendicular lines

[edit]

Thus two lines with trilinear equations and are perpendicular if and only if

Altitude

[edit]

The equation of the altitude from vertex A to side BCis[1]: p.98, #x 

Line in terms of distances from vertices

[edit]

The equation of a line with variable distances p, q, r from the vertices A, B, C whose opposite sides are a, b, cis[1]: p. 97, #viii 

Actual-distance trilinear coordinates

[edit]

The trilinears with the coordinate values a', b', c' being the actual perpendicular distances to the sides satisfy[1]: p. 11 

for triangle sides a, b, c and area Δ. This can be seen in the figure at the top of this article, with interior point P partitioning triangle ABC into three triangles PBC, △PCA, △PAB with respective areas

Distance between two points

[edit]

The distance d between two points with actual-distance trilinears ai : bi : ci is given by[1]: p. 46 

or in a more symmetric way

Distance from a point to a line

[edit]

The distance d from a point a' : b' : c' , in trilinear coordinates of actual distances, to a straight line is[1]: p. 48 

Quadratic curves

[edit]

The equation of a conic section in the variable trilinear point x : y : zis[1]: p.118 

It has no linear terms and no constant term.

The equation of a circle of radius r having center at actual-distance coordinates (a', b', c' )is[1]: p.287 

Circumconics

[edit]

The equation in trilinear coordinates x, y, z of any circumconic of a triangle is[1]: p. 192 

If the parameters l, m, n respectively equal the side lengths a, b, c (or the sines of the angles opposite them) then the equation gives the circumcircle.[1]: p. 199 

Each distinct circumconic has a center unique to itself. The equation in trilinear coordinates of the circumconic with center x' : y' : z' is[1]: p. 203 

Inconics

[edit]

Every conic section inscribed in a triangle has an equation in trilinear coordinates:[1]: p. 208 

with exactly one or three of the unspecified signs being negative.

The equation of the incircle can be simplified to[1]: p. 210, p.214 

while the equation for, for example, the excircle adjacent to the side segment opposite vertex A can be written as[1]: p. 215 

Cubic curves

[edit]

Many cubic curves are easily represented using trilinear coordinates. For example, the pivotal self-isoconjugate cubic Z(U, P), as the locus of a point X such that the P-isoconjugate of X is on the line UX is given by the determinant equation

Among named cubics Z(U, P) are the following:

Thomson cubic: , where iscentroid and isincenter
Feuerbach cubic: , where isFeuerbach point
Darboux cubic: , where isDe Longchamps point
Neuberg cubic: , where isEuler infinity point.

Conversions

[edit]

Between trilinear coordinates and distances from sidelines

[edit]

For any choice of trilinear coordinates x : y : z to locate a point, the actual distances of the point from the sidelines are given by a' = kx, b' = ky, c' = kz where k can be determined by the formula in which a, b, c are the respective sidelengths BC, CA, AB, and is the area of ABC.

Between barycentric and trilinear coordinates

[edit]

A point with trilinear coordinates x : y : z has barycentric coordinates ax : by : cz where a, b, c are the sidelengths of the triangle. Conversely, a point with barycentrics α : β : γ has trilinear coordinates

Between Cartesian and trilinear coordinates

[edit]

Given a reference triangle ABC, express the position of the vertex B in terms of an ordered pair of Cartesian coordinates and represent this algebraically as a vector using vertex C as the origin. Similarly define the position vector of vertex Aas Then any point P associated with the reference triangle ABC can be defined in a Cartesian system as a vector If this point P has trilinear coordinates x : y : z then the conversion formula from the coefficients k1 and k2 in the Cartesian representation to the trilinear coordinates is, for side lengths a, b, c opposite vertices A, B, C,

and the conversion formula from the trilinear coordinates to the coefficients in the Cartesian representation is

More generally, if an arbitrary origin is chosen where the Cartesian coordinates of the vertices are known and represented by the vectors and if the point P has trilinear coordinates x : y : z, then the Cartesian coordinates of are the weighted average of the Cartesian coordinates of these vertices using the barycentric coordinates ax, by, cz as the weights. Hence the conversion formula from the trilinear coordinates x, y, z to the vector of Cartesian coordinates of the point is given by

where the side lengths are

See also

[edit]

References

[edit]
  1. ^ a b c d e f g h i j k l m n o p q r s William Allen Whitworth (1866) Trilinear Coordinates and Other Methods of Analytical Geometry of Two Dimensions: an elementary treatise, link from Cornell University Historical Math Monographs.
[edit]
Retrieved from "https://en.wikipedia.org/w/index.php?title=Trilinear_coordinates&oldid=1234291831"

Categories: 
Linear algebra
Affine geometry
Triangle geometry
Coordinate systems
Hidden categories: 
Articles with short description
Short description is different from Wikidata
Articles with J9U identifiers
Articles with LCCN identifiers
 



This page was last edited on 13 July 2024, at 16:02 (UTC).

Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



Privacy policy

About Wikipedia

Disclaimers

Contact Wikipedia

Code of Conduct

Developers

Statistics

Cookie statement

Mobile view



Wikimedia Foundation
Powered by MediaWiki