Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Tropospheric ducting  





2 Notable and record distance tropospheric DX receptions  





3 See also  





4 References  





5 External links  














Tropospheric propagation






Deutsch
Português

 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Tropospheric propagation describes electromagnetic propagation in relation to the troposphere. The service area from a VHF or UHF radio transmitter extends to just beyond the optical horizon, at which point signals start to rapidly reduce in strength. Viewers living in such a "deep fringe" reception area will notice that during certain conditions, weak signals normally masked by noise increase in signal strength to allow quality reception. Such conditions are related to the current state of the troposphere.

Tropospheric propagated signals travel in the part of the atmosphere adjacent to the surface and extending to some 25,000 feet (8 km). Such signals are thus directly affected by weather conditions extending over some hundreds of miles. During very settled, warm anticyclonic weather (i.e., high pressure), usually weak signals from distant transmitters improve in strength. Another symptom during such conditions may be interference to the local transmitter resulting in co-channel interference, usually horizontal lines or an extra floating picture with analog broadcasts and break-up with digital broadcasts. A settled high-pressure system gives the characteristic conditions for enhanced tropospheric propagation, in particular favouring signals which travel along the prevailing isobar pattern (rather than across it). Such weather conditions can occur at any time, but generally the summer and autumn months are the best periods. In certain favourable locations, enhanced tropospheric propagation may enable reception of ultra high frequency (UHF) TV signals up to 1,000 miles (1,600 km) or more.

The observable characteristics of such high-pressure systems are usually clear, cloudless days with little or no wind. At sunset the upper air cools, as does the surface temperature, but at different rates. This produces a boundary or temperature gradient, which allows an inversion level to form – a similar effect occurs at sunrise. The inversion is capable of allowing very high frequency (VHF) and UHF signal propagation well beyond the normal radio horizon distance.

The inversion effectively reduces sky wave radiation from a transmitter – normally VHF and UHF signals travel on into space when they reach the horizon, the refractive index of the ionosphere preventing signal return. With temperature inversion, however, the signal is to a large extent refracted over the horizon rather than continuing along a direct path into outer space.

Fog also produces good tropospheric results, again due to inversion effects. Fog occurs during high-pressure weather, and if such conditions result in a large belt of fog with clear sky above, there will be heating of the upper fog level and thus an inversion. This situation often arises towards night fall, continues overnight and clears with the sunrise over a period of around 4 – 5 hours.

Tropospheric ducting[edit]

Tropospheric ducting is a type of radio propagation that tends to happen during periods of stable, anticyclonic weather. In this propagation method, when the signal encounters a rise in temperature in the atmosphere instead of the normal decrease (known as a temperature inversion), the higher refractive index of the atmosphere there will cause the signal to be bent. Tropospheric ducting affects all frequencies, and signals enhanced this way tend to travel up to 800 miles (1,300 km) (though some people have received "tropo" beyond 1,000 miles / 1,600 km), while with tropospheric-bending, stable signals with good signal strength from 500+ miles (800+ km) away are not uncommon when the refractive index of the atmosphere is fairly high.

Tropospheric ducting of radio and television signals is relatively common during the summer and autumn months, and is the result of change in the refractive index of the atmosphere at the boundary between air masses of different temperatures and humidities. Using an analogy, it can be said that the denser air at ground level slows the wave front a little more than does the rare upper air, imparting a downward curve to the wave travel.

Ducting can occur on a very large scale when a large mass of cold air is overrun by warm air. This is termed a temperature inversion, and the boundary between the two air masses may extend for 1,000 miles (1,600 km) or more along a stationary weather front.

Temperature inversions occur most frequently along coastal areas bordering large bodies of water. This is the result of natural onshore movement of cool, humid air shortly after sunset when the ground air cools more quickly than the upper air layers. The same action may take place in the morning when the rising sun warms the upper layers.

Even though tropospheric ducting has been occasionally observed down to 40 MHz, the signal levels are usually very weak. Higher frequencies above 90 MHz are generally more favourably propagated.

High mountainous areas and undulating terrain between the transmitter and receiver can form an effective barrier to tropospheric signals. Ideally, a relatively flat land path between the transmitter and receiver is ideal for tropospheric ducting. Sea paths also tend to produce superior results.

In certain parts of the world, notably the Mediterranean Sea and the Persian Gulf, tropospheric ducting conditions can become established for many months of the year to the extent that viewers regularly receive quality reception of signals over distances of 1,000 miles (1,600 km). Such conditions are normally optimum during very hot settled summer weather.

Tropospheric ducting over water, particularly between California and Hawaii, Brazil and Africa, Australia and New Zealand, Australia and Indonesia, Strait of Florida, and Bahrain and Pakistan, has produced VHF/UHF reception ranging from 1000 to 3,000 miles (1,600 – 4,800 km). A US listening post was built in Ethiopia to exploit a common ducting of signals from southern Russia.

Tropospheric signals exhibit a slow cycle of fading and will occasionally produce signals sufficiently strong for noise-free stereo, reception of Radio Data System (RDS) data, and solid locks of HD Radio streams on FM, noise-free, color TV pictures, or stable DTV reception, as well stable DAB Radio reception. With DVB-T it can also enable a wide SFN, so long as the two transmitters are within a guard interval and are almost equidistant from the receiver as well as synchronised. However, if they are not synchronised and are not equidistant they will interfere with each other.

Virtually all long-distance reception of digital television occurs by tropospheric ducting (due to most, but not all, TV stations broadcasting in the UHF band).

Notable and record distance tropospheric DX receptions[edit]

"DXing is the art and science of listening to distant stations (D=distance X=xmitter or transmitter)."[1] The ARRL, association for amateur radio maintains the list of North American distance records, which includes tropo results.

See also[edit]

References[edit]

  1. ^ "DXing.com – The Web Resource for Radio Hobbyists". Universal Radio Research. November 2, 2016. Retrieved November 12, 2016.
  • ^ "Rijn Muntjewerff's TV DX Netherlands 1961–2005". Todd Emslie's TV DX Page. Todd Emslie. Retrieved November 12, 2016.
  • ^ "WTFDA FM ALL-TIME DISTANCE RECORDS – AS OF 2/1/16". WTFDA.org (Worldwide TV-FM DX Association). February 1, 2016. Retrieved November 12, 2016.
  • ^ "FERNANDO GARCIA: North America's champion of tropo TV DX". THE TV DX EXPOSITION. Retrieved November 12, 2016.
  • ^ "JEFF KRUSZKA'S RECORD-BREAKING DTV TROPO as received in south Louisiana". THE TV DX EXPOSITION. Retrieved November 12, 2016.
  • ^ Emel. "XPLORADIO: 9.12.2004 – gigantyczne tropo UHF i FM!". XPLORADIO. Retrieved 2018-07-01.
  • ^ "Unknown". youtube.com.[permanent dead link]
  • ^ "TROPO MA to FL!!!! 97.9 WRMF". Worldwide TV-FM DX Association; WTFDA Forums. June 2007. Retrieved November 12, 2016.
  • ^ "My FM-DX Records". XPLORADIO. Maciej Ługowski. Retrieved 2018-07-01.
  • ^ EMEL DX (2011-09-19), FM DX: 1700 KM TROPO!, archived from the original on 2021-12-20, retrieved 2017-10-10
  • ^ "Kjell, SM7GVF (ex SM4GVF) – Best DX worked by SM7GVF from JO77GA". Retrieved November 12, 2016.
  • ^ "WA5IYX DTV DX Screen Captures". Retrieved November 12, 2016.
  • ^ "Aug 24–25 2009 Es (er, Tropo)". Worldwide TV-FM DX Association; WTFDA Forums. August 2009. Retrieved November 12, 2016.
  • ^ "Visual Logbook (814 FM/o TV)". Archived from the original on 2018-10-27.
  • ^ "FM DX Tropo Log – Tomaszów Mazowiecki, Poland".
  • ^ Archived at Ghostarchive and the Wayback Machine: "[Tropo] 98.5 – DR P4 – Holstebro/Mejrup, Denmark (1960 km)". YouTube.
  • External links[edit]

    • "DXing FAQ". Worldwide TV-FM DX Association. Retrieved April 25, 2005.
  • "William Hepburn's VHF / UHF Tropospheric Ducting Forecast". William Hepburn's TV & Radio DX Information Centre. Retrieved June 12, 2006.
  • Tropospheric Ducting YouTube Channel of FMDXUA – [1]
  • "Bellevue, NE DX Photos". Matthew C. Sittel's DX Page. Archived from the original on September 27, 2007. Retrieved April 26, 2005.[dead link]
  • "Jeff Kadet, K1MOD's TV DX Photos". Archived from the original on 2015-03-01. Retrieved 2015-03-02.oldtvguides.com

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=Tropospheric_propagation&oldid=1208094313"

    Category: 
    Radio frequency propagation
    Hidden categories: 
    All articles with dead external links
    Articles with dead external links from June 2022
    Articles with permanently dead external links
    Articles with short description
    Short description matches Wikidata
    Articles lacking in-text citations from April 2013
    All articles lacking in-text citations
    Articles with dead external links from July 2022
     



    This page was last edited on 16 February 2024, at 13:17 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki