Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Basic physics  





2 Experimental configuration  





3 See also  





4 References  














Two-photon photoelectron spectroscopy






Deutsch
 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


A lower energy pump pulse photoexcites an electron in a ground stateorHOMO into a higher lying excited state. After a time delay, a second, higher energy pulse photoemits the excited electron into free electron states above the vacuum level.

Time-resolved two-photon photoelectron (2PPE) spectroscopy is a time-resolved spectroscopy technique which is used to study electronic structure and electronic excitations at surfaces.[1][2] The technique utilizes femtosecond to picosecond laser pulses in order to first photoexcite an electron. After a time delay, the excited electron is photoemitted into a free electron state by a second pulse. The kinetic energy and the emission angle of the photoelectron are measured in an electron energy analyzer. To facilitate investigations on the population and relaxation pathways of the excitation, this measurement is performed at different time delays.

This technique has been used for many different types of materials to study a variety of exotic electron behaviors, including image potential states at metal surfaces,[1][3] and electron dynamics at molecular interfaces.[4]

Basic physics[edit]

The final kinetic energy of the electron can be modeled by

where the EB is the binding energy of the initial state, Ekin is the kinetic energy of the photoemitted electron, Φ is the work function of the material in question, and Epump, Eprobe are the photon energies of the laser pulses, respectively. Without a time delay, this equation is exact. However, as the delay between the pump and probe pulses increases, the excited electron may relax in an energy. Hence the energy of the photoemitted electron is lowered. With large enough time delay between the two pulses, the electron will relax all the way back to its original state. The timescales at which the electronic relaxation occurs, as well as the relaxation mechanism (either via vibronic coupling or electronic coupling) is of interest for applications of functional devices such as solar cells and light-emitting diodes.

Experimental configuration[edit]

Setup (schematic) for two-photon photoemission experiments
A laser pulse is first split using a beam splitter into two different laser lines. One laser line is used to create its second harmonic, giving it a higher photon energy which will serve as the probe pulse. The other laser line passes through a delay stage, which allows the experimenter to vary the delay between the laser pulses impinging on the sample.

Time-resolved two-photon photoelectron spectroscopy usually employs a combination of ultrafast optical technology as well as ultrahigh vacuum components. The main optical component is an ultrafast (femtosecond) laser system which generates pulses in the near infrared. Nonlinear optics are used to generate photon energies in the visible and ultraviolet spectral range. Typically, ultraviolet radiation is required to photoemit electrons. In order to allow for time-resolved experiments, a fine adjustment delay stage must be employed in order to manipulate the time delay between the pump and the probe pulse.

See also[edit]

References[edit]

  1. ^ a b Weinelt, Martin (2002). "Time-resolved two-photon photoemission from metal surfaces". Journal of Physics: Condensed Matter. 14 (43): R1099–R1141. doi:10.1088/0953-8984/14/43/202. ISSN 0953-8984. S2CID 250856541.
  • ^ Ueba, H.; Gumhalter, B. (2007-01-01). "Theory of two-photon photoemission spectroscopy of surfaces". Progress in Surface Science. 82 (4–6): 193–223. doi:10.1016/j.progsurf.2007.03.002.
  • ^ Fauster, Th.; Steinmann, W. (1995-01-01), Halevi, P. (ed.), "Two-photon photoemission spectroscopy of image states", Photonic Probes of Surfaces, Electromagnetic Waves: Recent Developments in Research, Amsterdam: Elsevier, pp. 347–411, doi:10.1016/b978-0-444-82198-0.50015-1, ISBN 9780444821980, retrieved 2020-07-07
  • ^ Zhu, X.-Y. (2002-10-01). "ELECTRON TRANSFER AT MOLECULE-METAL INTERFACES: A Two-Photon Photoemission Study". Annual Review of Physical Chemistry. 53 (1): 221–247. doi:10.1146/annurev.physchem.53.082801.093725. ISSN 0066-426X. PMID 11972008.

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=Two-photon_photoelectron_spectroscopy&oldid=1189490032"

    Categories: 
    Emission spectroscopy
    Ultrafast spectroscopy
    Electron spectroscopy
     



    This page was last edited on 12 December 2023, at 04:53 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki