Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Historic description  





2 Supernova  





3 Supernova remnant  



3.1  Initial radio detection  





3.2  X-ray observation  





3.3  Optical detection  







4 Companion star  





5 In literature  





6 See also  





7 References  





8 External links  














SN 1572






Afrikaans
العربية
Català
Čeština
Dansk
Deutsch
Eesti
Español
فارسی
Français
Galego

Հայերեն
Interlingua
Italiano
עברית
Lëtzebuergesch
Nederlands

Norsk nynorsk
Polski
Português
Română
Русский
Simple English
Slovenčina
Suomi
Svenska
Türkçe
Українська


 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 




In other projects  



Wikimedia Commons
 
















Appearance
   

 





Coordinates: Sky map00h25m21s, +64° 0915
 

From Wikipedia, the free encyclopedia
 

(Redirected from Tycho's Nova)

SN 1572
Remnant of SN 1572 as seen in X-ray light from the Chandra X-ray Observatory
Event typeAstronomical radio source, astrophysical X-ray source Edit this on Wikidata
Type Ia[1]
DateNovember 1572
ConstellationCassiopeia
Right ascension0h 25.3m
Declination+64° 09
Epoch?
Galactic coordinatesG.120.1+1.4
Distancebetween 8,000 ly (2.5 kpc) and 9,800 ly (3 kpc)
RemnantNebula
HostMilky Way
ProgenitorUnknown
Progenitor typeUnknown
Colour (B-V)~1
Peak apparent magnitude−4
Other designationsSN 1572, HR 92, SN 1572A, SNR G120.1+01.4, SNR G120.2+01.4, 1ES 0022+63.8, 1RXS J002509.2+640946, B Cas, BD+63 39a, 8C 0022+638, 4C 63.01, 3C 10, 3C 10.0, 2C 34, RRF 1174, 1XRS 00224+638, 2U 0022+63, 3A 0022+638, 3CR 10, 3U 0022+63, 4U 0022+63, AJG 112, ASB 1, BG 0022+63, CTB 4, KR 101, VRO 63.00.01, [DGW65] 3, PBC J0024.9+6407, F3R 3628, WB 0022+6351, CGPSE 107, GB6 B0022+6352
Preceded bySN 1181
Followed bySN 1604
  Related media on Commons

SN 1572 (Tycho's Supernova, Tycho's Nova), or B Cassiopeiae (B Cas), was a supernovaofType Ia in the constellation Cassiopeia, one of eight supernovae visible to the naked eye in historical records. It appeared in early November 1572 and was independently discovered by many individuals.

Its supernova remnant has been observed optically but was first detected at radio wavelengths. It is often known as 3C 10, a radio-source designation, although increasingly as Tycho's supernova remnant.

Historic description[edit]

A star map of the constellation Cassiopeia showing the position (labelled I) of the supernova of 1572. From Tycho Brahe's De nova stella

The appearance of the Milky Way supernova of 1572 belongs among the most important observation events in the history of astronomy. The appearance of the "new star" helped to revise ancient models of the heavens and to speed on a revolution in astronomy that began with the realisation of the need to produce better astrometric star catalogues, and thus the need for more precise astronomical observing instruments. It also challenged the Aristotelian dogma of the unchangeability of the realm of stars.[2]

The supernova of 1572 is often called "Tycho's supernova", because of Tycho Brahe's extensive work De nova et nullius aevi memoria prius visa stella ("Concerning the Star, new and never before seen in the life or memory of anyone", published in 1573 with reprints overseen by Johannes Kepler in 1602 and 1610), a work containing both Brahe's own observations and the analysis of sightings from many other observers. Comparisons between Brahe's observations and those of Spanish scientist Jerónimo Muñoz[3] revealed that the object was more distant than the Moon.[4] This lead Brahe to approach the Great Comet of 1577 as an astronomical body as well.[2] Other Europeans to sight the supernova included Wolfgang Schuler, Christopher Clavius, Thomas Digges, John Dee, Francesco Maurolico, Tadeáš Hájek and Bartholomäus Reisacher [de].[5]

In England, Queen Elizabeth had the mathematician and astrologer Thomas Allen come and visit "to have his advice about the new star that appeared in the SwanorCassiopeia ... to which he gave his judgement very learnedly", as the antiquary John Aubrey recorded in his memoranda a century later.[6]

InMing dynasty China, the star became an issue between Zhang Juzheng and the young Wanli Emperor: in accordance with the cosmological tradition, the emperor was warned to consider his misbehavior, since the new star was interpreted as an evil omen.[7]

The more reliable contemporary reports state that the new star itself burst forth soon after November 2, 1572 and by November 11 it was already brighter than Jupiter. Around November 16, 1572, it reached its peak brightness at about magnitude −4.0, with some descriptions giving it as equal to Venus when that planet was at its brightest.[8] Contrarily, Brahe described the supernova as "brighter than Venus".[2] The supernova remained visible to the naked eye into early 1574, gradually fading until it disappeared from view.[8]

Supernova[edit]

Light curve of Tycho's supernova, reconstructed from historical observations (via the Open Supernova Catalog)

The supernova was classified as type I on the basis of its historical light curve soon after type I and type II supernovae were first defined on the basis of their spectra.[9] The X-ray spectrum of the remnant showed that it was almost certainly of type Ia, but its detailed classification within the type Ia class continued to be debated until the spectrum of its light at peak luminosity was measured in a light echo in 2008. This gave final confirmation that it was a normal type Ia.[1]

The classification as a type Ia supernova of normal luminosity allows an accurate measure of the distance to SN 1572. The peak absolute magnitude can be calculated from the B-band decline rate to be −19.0±0.3. Given estimates of the peak apparent magnitude and the known extinction of 1.86±0.2 magnitudes, the distance is 3.8+1.5
−0.9
kpc.[1]

Supernova remnant[edit]

The distance to the supernova remnant has been estimated to between 2 and 5 kpc (approx. 6,500 and 16,300 light-years), with recent studies suggesting a narrower range of 2.5 and 3 kpc (approximately 8,000 and 9,800 light-years).[10] Tycho's SNR has a roughly spherical morphology and spreads over an angular diameter of about 8 arcminutes. Its physical size corresponds to radius of the order of a few parsecs. Its measured expansion rate is about 11–12%/year in radio and X-ray. The average forward shock speed is between 4,000 and 5,000 km/s, dropping to lower speed when encountering local interstellar clouds.[11] Older source list the gas shell has reached an apparent diameter of 3.7 arcminutes.[12]

Initial radio detection[edit]

The search for a supernova remnant was futile until 1952, when Robert Hanbury Brown and Cyril Hazard reported a radio detection at 158.5 MHz, obtained at the Jodrell Bank Observatory.[13] This was confirmed, and its position more accurately measured in 1957 by Baldwin and Edge using the Cambridge Radio Telescope working at a wavelength of 1.9 m.[14] The remnant was also identified tentatively in the second Cambridge Catalogue of Radio Sources as object "2C 34", and more firmly as "3C 10" in the third Cambridge list.[15]

There is no dispute that 3C 10 is the remnant of the supernova observed in 1572–1573. Following a 1964 review article by Minkowski,[16] the designation 3C 10 appears to be that most commonly used in the literature when referring to the radio remnant of B Cas, although some authors use the tabulated galactic designation G120.7+2.1 and many authors commonly refer to it as Tycho's supernova remnant. Because the radio remnant was reported before the optical supernova-remnant wisps were discovered, the designation 3C 10 is used by some to signify the remnant at all wavelengths.

Tour of Tycho's Supernova remnant

X-ray observation[edit]

An X-ray source designated Cepheus X-1 (or Cep X-1) was detected by the Uhuru X-ray observatory at 4U 0022+63. Earlier catalog designations are X120+2 and XRS 00224+638. Cepheus X-1 is actually in the constellation Cassiopeia, and it is SN 1572, the Tycho SNR.[17]

Optical detection[edit]

The red circle visible in the upper left part of this WISE infrared image is the remnant of SN 1572.
Expansion of Tycho's Supernova Remnant from 2000 to 2015[18]

The supernova remnant of B Cas was discovered in the 1960s by scientists with a Palomar Mountain telescope as a very faint nebula. It was later photographed by a telescope on the international ROSAT spacecraft. The supernova has been confirmed as Type Ia,[1] in which a white dwarf star has accreted matter from a companion until it approaches the Chandrasekhar limit and explodes. This type of supernova does not typically create the spectacular nebula more typical of Type II supernovas, such as SN 1054 which created the Crab Nebula. A shell of gas is still expanding from its center at about 9,000 km/s. A recent study indicates a rate of expansion below 5,000 km/s.[19]

Companion star[edit]

In October 2004, a letter in Nature reported the discovery of a G2 star, similar in type to our own Sun and named Tycho G.[20] It is thought to be the companion star that contributed mass to the white dwarf that ultimately resulted in the supernova. A subsequent study, published in March 2005, revealed further details about this star: Tycho G was probably a main-sequence star or subgiant before the explosion, but some of its mass was stripped away and its outer layers were shock-heated by the supernova.[21]

Tycho G's current velocity is perhaps the strongest evidence that it was the companion star to the white dwarf, as it is traveling at a rate of 136 km/s, which is more than four times faster than the mean velocity of other stars in its stellar neighbourhood. This find has been challenged in recent years. The star is relatively far away from the center and does not show rotation which might be expected of a companion star.[21]

InGaia DR2, the star was calculated to be 6,400+2,000
−1,200
light-years away, on the lower end of SN 1572's possible range of distances, which in turn lowered the calculated velocity from 136 km/s to only 56 km/s.

In literature[edit]

In the ninth episode of James Joyce's Ulysses, Stephen Dedalus associates the appearance of the supernova with the youthful William Shakespeare, and in the November 1998 issue of Sky & Telescope, three researchers from Southwest Texas State University, Don Olson and Russell Doescher of the Physics Department and Marilynn Olson of the English Department, argued that this supernova is described in Shakespeare's Hamlet, specifically by Bernardo in Act I, Scene i.[22]

The supernova inspired the poem "Al Aaraaf" by Edgar Allan Poe.[23]

The protagonist in Arthur C. Clarke's 1955 short story "The Star" casually mentions the supernova. It is a major element in Frederik Pohl's spoof science article, "The Martian Star-Gazers", first published in Galaxy Science Fiction Magazine in 1962.

See also[edit]

References[edit]

  1. ^ a b c d Krause, Oliver; et al. (2008). "Tycho Brahe's 1572 supernova as a standard type Ia as revealed by its light-echo spectrum". Nature. 456 (7222): 617–619. arXiv:0810.5106. Bibcode:2008Natur.456..617K. doi:10.1038/nature07608. PMID 19052622. S2CID 4409995.
  • ^ a b c Sagan, Carl & Druyan, Ann (1997). Comet. New York: Random House. p. 33. ISBN 978-0-3078-0105-0.
  • ^ Muñoz, Jerónimo (1573). "Libro del nuevo Cometa, y del lugar donde se hazen; y como se vera por las Parallaxes quan lexos estan de tierra; y del Prognostico deste". Bg/36967(1). Valencia.
  • ^ "Blast From The Past: Astronomers Resurrect 16th-Century Supernova". ScienceDaily. December 4, 2008. Retrieved January 6, 2024.
  • ^ De mirabili Novae ac splendidis stellae, Mense Nouembri anni 1572, primum conspectæ, ac etiam nunc apparentis, Phœnomeno
  • ^ Aubrey, John (1898). Clark, Andrew (ed.). Aubrey's Brief Lives, Vol. 1. Oxford: Clarendon. p. 28.
  • ^ Science and Civilization in China, v.3 pp.425-6; cf. 1587, a Year of No Significance.
  • ^ a b Ruiz-Lapuente, Pilar (2004). "Tycho Brahe's Supernova: Light from Centuries Past". The Astrophysical Journal. 612 (1): 357–363. arXiv:astro-ph/0309009. Bibcode:2004ApJ...612..357R. doi:10.1086/422419. S2CID 15830343.
  • ^ Baade, Walter (1945). "B Cassiopeiae as a Supernova of Type I". Astrophysical Journal. 102: 309. Bibcode:1945ApJ...102..309B. doi:10.1086/144761.
  • ^ Tian, Wenwu; Leahy, Denis A. (December 26, 2010). "Tycho SN 1572: A Naked Ia Supernova Remnant without Associated Ambient Molecular Cloud". Astrophysical Journal Letters. 729 (2): L15. arXiv:1012.5673. Bibcode:2011ApJ...729L..15T. doi:10.1088/2041-8205/729/2/L15. S2CID 119104584.
  • ^ Decourchelle, Anne (2017), Alsabti, Athem W.; Murdin, Paul (eds.), "Supernova of 1572, Tycho's Supernova", Handbook of Supernovae, Cham: Springer International Publishing, pp. 117–137, Bibcode:2017hsn..book..117D, doi:10.1007/978-3-319-21846-5_48, ISBN 978-3-319-21846-5, retrieved March 10, 2023
  • ^ "SN 1572, Tycho's Supernova". spider.seds.org. Retrieved March 10, 2023.
  • ^ Hanbury Brown, R.; Hazard, C. (1952). "Radio-Frequency Radiation from Tycho Brahe's Supernova (A.D. 1572)". Nature. 170 (4322): 364–365. Bibcode:1952Natur.170..364H. doi:10.1038/170364a0. S2CID 4161519.
  • ^ Baldwin, J. E.; Edge, D. O. (1957). "Radio emission from the remnants of the supernovae of 1572 and 1604". The Observatory. 77: 139–143. Bibcode:1957Obs....77..139B.
  • ^ (Edge et al. 1959)
  • ^ Minkowski, R. (September 1964). "Supernovae and Supernova Remnants". Annual Review of Astronomy and Astrophysics. 2 (1): 247–266. Bibcode:1964ARA&A...2..247M. doi:10.1146/annurev.aa.02.090164.001335.
  • ^ Wood, KS; Meekins, JF; Yentis, DJ; Smathers, HW; McNutt, DP; Bleach, RD (December 1984). "The HEAO A-1 X-ray source catalog". Astrophys. J. Suppl. Ser. 56 (12): 507–649. Bibcode:1984ApJS...56..507W. doi:10.1086/190992.
  • ^ Williams, Brian J; Chomiuk, Laura; Hewitt, John W; Blondin, John M; Borkowski, Kazimierz J; Ghavamian, Parviz; Petre, Robert; Reynolds, Stephen P (April 6, 2016). "An X-ray and Radio Study of the Varying Expansion Velocities in Tycho's Supernova Remnant". The Astrophysical Journal. 823 (2): L32. arXiv:1604.01779. Bibcode:2016ApJ...823L..32W. doi:10.3847/2041-8205/823/2/L32. PMC 7380093. PMID 32714502. S2CID 118542192.
  • ^ Hayato, Asami; Yamaguchi, Hiroya; Tamagawa, Toru; Katsuda, Satoru; Hwang, Una; Hughes, John Patrick; Ozawa, Midori; Bamba, Aya; Kinugasa, Kenzo (2010). "Expansion Velocity of Ejecta in Tycho's Supernova Remnant Measured by Doppler Broadened X-ray Line Emission". The Astrophysical Journal. 725 (1): 894–903. arXiv:1009.6031. Bibcode:2010ApJ...725..894H. doi:10.1088/0004-637X/725/1/894. S2CID 119102740.
  • ^ Ruiz-Lapuente, Pilar; et al. (2004). "The binary progenitor of Tycho Brahe's 1572 supernova". Nature. 431 (7012): 1069–1072. arXiv:astro-ph/0410673. Bibcode:2004Natur.431.1069R. doi:10.1038/nature03006. PMID 15510140. S2CID 4346227.
  • ^ a b Kerzendorf, Wolfgang E.; Yong, David; Schmidt, Brian P.; Simon, Joshua D.; Jeffery, C. Simon; Anderson, Jay; Podsiadlowski, Philipp; Gal-Yam, Avishay; Silverman, Jeffrey M.; Filippenko, Alexei V.; Nomoto, Ken'Ichi; Murphy, Simon J.; Bessell, Michael S.; Venn, Kim A.; Foley, Ryan J. (2013). "A High-resolution Spectroscopic Search for the Remaining Donor for Tycho's Supernova". The Astrophysical Journal. 774 (2): 99. arXiv:1210.2713. Bibcode:2013ApJ...774...99K. doi:10.1088/0004-637X/774/2/99. S2CID 118470111.
  • ^ "Researchers say star in Hamlet may be supernova of 1572". Texas State University. June 8, 2016. Archived from the original on September 6, 2008. Retrieved February 6, 2018.
  • ^ Meyers, Jeffrey (2000). Edgar Allan Poe: His Life and Legacy. Rowman & Littlefield. pp. 41–. ISBN 978-0-8154-1038-6.
  • External links[edit]


  • icon Stars
  • Spaceflight
  • Outer space
  • Solar System

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=SN_1572&oldid=1218187522"

    Categories: 
    Historical supernovae
    Supernova remnants
    1572
    1572 in science
    Tycho Brahe
    Cassiopeia (constellation)
    Astronomical objects discovered in 1572
    Bayer objects
    Bright Star Catalogue objects
    Durchmusterung objects
    3C objects
    Hidden categories: 
    Articles with short description
    Short description matches Wikidata
    Use mdy dates from January 2024
    Articles using Infobox astronomical event using locally defined parameters
    Commons category link is on Wikidata
    Webarchive template wayback links
    Articles containing video clips
     



    This page was last edited on 10 April 2024, at 07:39 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki