Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 History  





2 Statement of the theorem  





3 Case of n= 2  





4 Proof of n= 2  





5 Proof of general case  





6 See also  





7 References  














Universal chord theorem






Français
 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


A chord (in red) of length 0.3 on a sinusoidal function. The universal chord theorem guarantees the existence of chords of length 1/n for functions satisfying certain conditions.

Inmathematical analysis, the universal chord theorem states that if a function f is continuous on [a,b] and satisfies , then for every natural number , there exists some such that .[1]

History[edit]

The theorem was published by Paul Lévy in 1934 as a generalization of Rolle's Theorem.[2]

Statement of the theorem[edit]

Let denote the chord set of the function f. If f is a continuous function and , then for all natural numbers n. [3]

Case of n = 2[edit]

The case when n = 2 can be considered an application of the Borsuk–Ulam theorem to the real line. It says that if is continuous on some interval with the condition that , then there exists some such that .

In less generality, if iscontinuous and , then there exists that satisfies .

Proof of n = 2[edit]

Consider the function defined by . Being the sum of two continuous functions, is continuous, . It follows that and by applying the intermediate value theorem, there exists such that , so that . Which concludes the proof of the theorem for

Proof of general case[edit]

The proof of the theorem in the general case is very similar to the proof for Let be a non negative integer, and consider the function defined by . Being the sum of two continuous functions, is continuous. Furthermore, . It follows that there exists integers such that The intermediate value theorems gives us c such that and the theorem follows.

See also[edit]

References[edit]

  1. ^ Rosenbaum, J. T. (May, 1971) The American Mathematical Monthly, Vol. 78, No. 5, pp. 509–513
  • ^ Paul Levy, "Sur une Généralisation du Théorème de Rolle", C. R. Acad. Sci., Paris, 198 (1934) 424–425.
  • ^ Oxtoby, J.C. (May 1978). "Horizontal Chord Theorems". The American Mathematical Monthly. 79: 468–475. doi:10.2307/2317564.

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=Universal_chord_theorem&oldid=1118242783"

    Category: 
    Mathematical theorems
    Hidden categories: 
    Articles with short description
    Short description is different from Wikidata
     



    This page was last edited on 25 October 2022, at 22:10 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki