Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 See also  





2 References  














Uranium-234






Afrikaans
Català
Чӑвашла
Čeština
فارسی
Français
Bahasa Indonesia
Nederlands
Oʻzbekcha / ўзбекча
Português
Русский
Українська
Tiếng Vit

 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Uranium-234, 234U
a sample of uranium-234 oxide
General
Symbol234U
Namesuranium-234, 234U, U-234,
Uranium II (hist)
Protons (Z)92
Neutrons (N)142
Nuclide data
Natural abundance0.0054%
Half-life (t1/2)246000 years
Parent isotopes238U (alpha, beta, beta)
234Pa (β)
238Pu (α)
Decay products230Th
Decay modes
Decay modeDecay energy (MeV)
alpha emission4.8
Isotopes of uranium
Complete table of nuclides

Uranium-234 (234UorU-234) is an isotope of uranium. In natural uranium and in uranium ore, 234U occurs as an indirect decay productofuranium-238, but it makes up only 0.0055% (55parts per million, or 1/18,000) of the raw uranium because its half-life of just 245,500 years is only about 1/18,000 as long as that of 238U. Thus the ratio of 234
U
to238
U
in a natural sample is equivalent to the ratio of their half-lives. The primary path of production of 234U via nuclear decay is as follows: uranium-238 nuclei emit an alpha particle to become thorium-234. Next, with a short half-life, 234Th nuclei emit a beta particle to become protactinium-234 (234Pa), or more likely a nuclear isomer denoted 234mPa. Finally, 234Pa or 234mPa nuclei emit another beta particle to become 234U nuclei.

Uranium-234 nuclei decay by alpha emission to thorium-230, except for the tiny fraction (parts per billion) of nuclei that undergo spontaneous fission.

Extraction of rather small amounts of 234U from natural uranium would be feasible using isotope separation, similar to that used for regular uranium-enrichment. However, there is no real demand in chemistry, physics, or engineering for isolating 234U. Very small pure samples of 234U can be extracted via the chemical ion-exchange process from samples of plutonium-238 that have been aged somewhat to allow some decay to 234U via alpha emission.

Enriched uranium contains more 234U than natural uranium as a byproduct of the uranium enrichment process aimed at obtaining uranium-235, which concentrates lighter isotopes even more strongly than it does 235U. IAEA research paper TECDOC-1529 concludes the 234U content of enriched fuel is directly proportional to the degree of 235U—enrichment with 2% 235U resulting in 150 g234U/ton HM, and the most common 4.5% 235U enrichment resulting in 400 g234U/tonHM.[1] The increased percentage of 234U in enriched natural uranium is acceptable in current nuclear reactors. Recycled (re-enriched) reprocessed uranium contains even higher fractions of 234U. This is advantageous because while 234U is not fissile, it tends to absorb slow neutrons in a nuclear reactor breeding 235U. This is much more efficient than the series of steps 238U + n → 239Np239Pu in replacing fissile isotope consumption.

Uranium-234 has a neutron-capture cross section of about 100 barns for thermal neutrons, and about 700 barns for its resonance integral—the average of neutrons having a range of intermediate energies. In a nuclear reactor non-fissile isotopes 234U and 238U both capture a neutron, thereby breeding fissile isotopes 235U and 239Pu, respectively. 234U is converted to 235U more easily and therefore at a greater rate than 238U is to 239Pu (via neptunium-239) because 238U has a much smaller neutron-capture cross section of just 2.7 barns. In the reaction 234U + n → 235U reaction, the 234U content of 4.5% enriched fuel drops steadily over the irradiation period falling from 450g/ton HM to 205g/ton HM in fuel with an irradiation of 60GWd/ton HM.[2]

Additionally, (n, 2n) reactions with fast neutrons also convert small amounts of 235U to 234U. This is countered by the rapid conversion of available 234U into 235U through thermal neutron capture. Spent fuel may contain as much as 0.010% 234U, or 100 parts per million, a higher fraction than in natural uranium's 55 parts per million. Depleted uranium separated during the enrichment process contains much less 234U (around 0.001%[3]), which makes the radioactivity of depleted uranium about half of that of natural uranium. Natural uranium has an "equilibrium" concentration of 234U—the point at which an equal number of decays of 238U and 234U will occur.

Uranium-234 as well as uranium-232 are common byproducts in reactors breeding thorium-232 into uranium-233.


Lighter:
uranium-233
Uranium-234 is an
isotopeofuranium
Heavier:
uranium-235
Decay product of:
plutonium-238 (α)
protactinium-234
(β)
neptunium-234
(β+)
Decay chain
of uranium-234
Decays to:
thorium-230 (α)

See also[edit]

References[edit]

  1. ^ "Management of Reprocessed Uranium" (PDF). Retrieved 2024-01-24.
  • ^ "U234 Irridiation Graph" (PNG).
  • ^ WHO | Depleted uranium Archived August 15, 2012, at the Wayback Machine

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=Uranium-234&oldid=1231125559"

    Categories: 
    Actinides
    Isotopes of uranium
    Fertile materials
    Hidden categories: 
    Webarchive template wayback links
    Articles with short description
    Short description matches Wikidata
    Isotope content page
     



    This page was last edited on 26 June 2024, at 16:19 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki