Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Version history  





2 Modules  



2.1  Inversion of control container (dependency injection)  





2.2  Aspect-oriented programming framework  





2.3  Data access framework  





2.4  Transaction management framework  





2.5  Modelviewcontroller framework  





2.6  Remote access framework  





2.7  Convention-over-configuration rapid application development  



2.7.1  Spring Boot  





2.7.2  Spring Roo  







2.8  Batch framework  





2.9  Integration framework  







3 Criticisms  





4 See also  





5 References  





6 Bibliography  





7 External links  














User:Indsin/sandbox

















User page
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
User contributions
User logs
View user groups
Upload file
Special pages
Permanent link
Page information
Get shortened URL
Download QR code
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Orca Framework
Developer(s)Pivotal Software
Initial release1 October 2013; 10 years ago (2013-10-01)
Preview release

4.2.3-00SNAPSHOT / October 15, 2015 (2015-10-15)

Written inJava
Operating systemCross-platform
PlatformJava Virtual Machine
TypeSoftware Production Line Framework
Websitespring.io

The "ORCA Framework" is a standalone framework for producing enterprise level software. It is written in Java, which follows the model–view–controller (mvc) architectural pattern. It solves all the major functional and nonfunctional issues of multi-customer systems. It operates on almost all the major areas of software development by combining different modules.

Version history

[edit]

During 2012, Atra Vision Co. undertook some projects for developing and implementing enterprise level ERP systems for a group of factories and companies with versatility in their business perspective and employee strength, which made them understand the real time problems of software production line. This ERP contains around 60 modules, which should be implemented together accurately and must also be powerful enough to support high end feature level customization and flexibility without changing the code at the time of implementation. During the last decades of experience of many custom development projects, Atra team learned that architecture is one of the most important sections for any mission critical application. Continuous radical changes in the development process can be harmful for any development process flow. Another thing that we learned is that a bad quality in process flow and in product level can be a major cause for a project failure. It became an important necessity for us to investigate and select a proper way to solve these primary problems. In the first era of software development, the developers followed hard coded development process and rigid architecture. Where a requirement change can lead to a huge refraction in code is both time consuming and prone to bugs. During the second era, around 2000, the concept of BPMS (Business Process Management System) was introduced and made a revolution in software industry. It made the change in requirements and customization a comfort, and provided a solution to integrate legacy systems easily. But BPMS is unable to implement the core business process which makes it unsuitable for the mission. These investigations lead to stay in middle way. Because our framework should develop the core business and must integrate all the existing and new software modules, and also should have some advance features to support for future changes and customization.

Modules

[edit]

The Spring Framework includes several modules that provide a range of service:

Inversion of control container (dependency injection)

[edit]

Central to the Spring Framework is its inversion of control (IoC) container, which provides a consistent means of configuring and managing Java objects using reflection. The container is responsible for managing object lifecycles of specific objects: creating these objects, calling their initialization methods, and configuring these objects by wiring them together.

Objects created by the container are also called managed objects or beans. The container can be configured by loading XML files or detecting specific Java annotations on configuration classes. These data sources contain the bean definitions that provide the information required to create the beans.

Objects can be obtained by means of either dependency lookup or dependency injection.[2] Dependency lookup is a pattern where a caller asks the container object for an object with a specific name or of a specific type. Dependency injection is a pattern where the container passes objects by name to other objects, via either constructors, properties, or factory methods.

In many cases one need not use the container when using other parts of the Spring Framework, although using it will likely make an application easier to configure and customize. The Spring container provides a consistent mechanism to configure applications and integrates with almost all Java environments, from small-scale applications to large enterprise applications.

The container can be turned into a partially compliant EJB 3.0 container by means of the Pitchfork project. Some[who?] criticize the Spring Framework for not complying with standards.[3] However, SpringSource doesn't see EJB 3 compliance as a major goal, and claims that the Spring Framework and the container allow for more powerful programming models.[4] You do not create an object, but describe how they should be created, by defining it in the Spring configuration file. You do not call services and components, but tell which services and components must be called, by defining them in the Spring configuration files. This makes the code easy to maintain and easier to test through IoC.

Aspect-oriented programming framework

[edit]

The Spring Framework has its own Aspect-oriented programming (AOP) framework that modularizes cross-cutting concerns in aspects. The motivation for creating a separate AOP framework comes from the belief that it would be possible to provide basic AOP features without too much complexity in either design, implementation, or configuration. The Spring AOP framework also takes full advantage of the Spring container.

The Spring AOP framework is proxy pattern-based, and is configured at run time. This removes the need for a compilation step or load-time weaving. On the other hand, interception only allows for public method-execution on existing objects at a join point.

Compared to the AspectJ framework, Spring AOP is less powerful, but also less complicated. Spring 1.2 includes support to configure AspectJ aspects in the container. Spring 2.0 added more integration with AspectJ; for example, the pointcut language is reused and can be mixed with Spring AOP-based aspects. Further, Spring 2.0 added a Spring Aspects library that uses AspectJ to offer common Spring features such as declarative transaction management and dependency injection via AspectJ compile-time or load-time weaving. SpringSource also uses AspectJ AOP in other Spring projects such as Spring Roo and Spring Insight, with Spring Security also offering an AspectJ-based aspect library.

Spring AOP has been designed to make it able to work with cross-cutting concerns inside the Spring Framework. Any object which is created and configured by the container can be enriched using Spring AOP.

The Spring Framework uses Spring AOP internally for transaction management, security, remote access, and JMX.

Since version 2.0 of the framework, Spring provides two approaches to the AOP configuration:

<beans xmlns="http://www.springframework.org/schema/beans"
   xmlns:mvc="http://www.springframework.org/schema/mvc" 
   xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
   xmlns:aop="http://www.springframework.org/schema/aop" 
   xmlns:context="http://www.springframework.org/schema/context"
   xsi:schemaLocation="http://www.springframework.org/schema/beans
       http://www.springframework.org/schema/beans/spring-beans-3.0.xsd
       http://www.springframework.org/schema/context
       http://www.springframework.org/schema/context/spring-context-3.0.xsd
       http://www.springframework.org/schema/mvc
       http://www.springframework.org/schema/mvc/spring-mvc-3.0.xsd
       http://www.springframework.org/schema/aop 
       http://www.springframework.org/schema/aop/spring-aop-3.0.xsd">

The Spring team decided not to introduce new AOP-related terminology; therefore, in the Spring reference documentation and API, terms such as aspect, join point, advice, pointcut, introduction, target object (advised object), AOP proxy, and weaving all have the same meanings as in most other AOP frameworks (particularly AspectJ).

Data access framework

[edit]

Spring's data access framework addresses common difficulties developers face when working with databases in applications. Support is provided for all popular data access frameworks in Java: JDBC, iBatis/MyBatis, Hibernate, JDO, JPA, Oracle TopLink, Apache OJB, and Apache Cayenne, among others.

For all of these supported frameworks, Spring provides these features

All these features become available when using template classes provided by Spring for each supported framework. Critics have said these template classes are intrusive and offer no advantage over using (for example) the Hibernate API directly.[5][failed verification] In response, the Spring developers have made it possible to use the Hibernate and JPA APIs directly. This however requires transparent transaction management, as application code no longer assumes the responsibility to obtain and close database resources, and does not support exception translation.

Together with Spring's transaction management, its data access framework offers a flexible abstraction for working with data access frameworks. The Spring Framework doesn't offer a common data access API; instead, the full power of the supported APIs is kept intact. The Spring Framework is the only framework available in Java that offers managed data access environments outside of an application server or container.[citation needed]

While using Spring for transaction management with Hibernate, the following beans may have to be configured:

Other points of configuration include:

Transaction management framework

[edit]

Spring's transaction management framework brings an abstraction mechanism to the Java platform. Its abstraction is capable of:

In comparison, JTA only supports nested transactions and global transactions, and requires an application server (and in some cases also deployment of applications in an application server).

The Spring Framework ships a PlatformTransactionManager for a number of transaction management strategies:

Next to this abstraction mechanism the framework also provides two ways of adding transaction management to applications:

Together with Spring's data access framework — which integrates the transaction management framework — it is possible to set up a transactional system through configuration without having to rely on JTA or EJB. The transactional framework also integrates with messaging and caching engines.

Model–view–controller framework

[edit]

The Spring Framework features its own MVC web application framework, which wasn't originally planned. The Spring developers decided to write their own Web framework as a reaction to what they perceived as the poor design of the (then) popular Jakarta Struts Web framework,[6] as well as deficiencies in other available frameworks. In particular, they felt there was insufficient separation between the presentation and request handling layers, and between the request handling layer and the model.[7]

Like Struts, Spring MVC is a request-based framework. The framework defines strategy interfaces for all of the responsibilities that must be handled by a modern request-based framework. The goal of each interface is to be simple and clear so that it's easy for Spring MVC users to write their own implementations, if they so choose. MVC paves the way for cleaner front end code. All interfaces are tightly coupled to the Servlet API. This tight coupling to the Servlet API is seen by some as a failure on the part of the Spring developers to offer a high-level abstraction for Web-based applications [citation needed]. However, this coupling makes sure that the features of the Servlet API remain available to developers while offering a high abstraction framework to ease working with said API.

The DispatcherServlet class is the front controller[8] of the framework and is responsible for delegating control to the various interfaces during the execution phases of an HTTP request.

The most important interfaces defined by Spring MVC, and their responsibilities, are listed below:

Each strategy interface above has an important responsibility in the overall framework. The abstractions offered by these interfaces are powerful, so to allow for a set of variations in their implementations, Spring MVC ships with implementations of all these interfaces and together offers a feature set on top of the Servlet API. However, developers and vendors are free to write other implementations. Spring MVC uses the Java java.util.Map interface as a data-oriented abstraction for the Model where keys are expected to be string values.

The ease of testing the implementations of these interfaces seems one important advantage of the high level of abstraction offered by Spring MVC. DispatcherServlet is tightly coupled to the Spring inversion of control container for configuring the web layers of applications. However, web applications can use other parts of the Spring Framework—including the container—and choose not to use Spring MVC.

Remote access framework

[edit]

Spring's Remote Access framework is an abstraction for working with various RPC-based technologies available on the Java platform both for client connectivity and marshalling objects on servers. The most important feature offered by this framework is to ease configuration and usage of these technologies as much as possible by combining inversion of control and AOP.

The framework also provides fault-recovery (automatic reconnection after connection failure) and some optimizations for client-side use of EJB remote stateless session beans[clarify].

Spring provides support for these protocols and products out of the box

Apache CXF provides integration with the Spring Framework for RPC-style exporting of object on the server side.

Both client and server setup for all RPC-style protocols and products supported by the Spring Remote access framework (except for the Apache Axis support) is configured in the Spring Core container.

There is alternative open-source implementation (Cluster4Spring) of a remoting subsystem included into Spring Framework that is intended to support various schemes of remoting (1-1, 1-many, dynamic services discovering)…

Convention-over-configuration rapid application development

[edit]

Spring Boot

[edit]

Spring Boot is Spring's convention-over-configuration solution for creating stand-alone, production-grade Spring based Applications that you can "just run".[9] It takes an opinionated view of the Spring platform and third-party libraries so you can get started with minimum fuss. Most Spring Boot applications need very little Spring configuration. Features:

Spring Roo

[edit]

Spring Roo provides an alternative, code-generation based approach at using convention-over-configuration to rapidly build applications in Java. It currently supports Spring Framework, Spring Security and Spring Web Flow. Roo differs from other rapid application development frameworks by focusing on:

Batch framework

[edit]

Spring Batch is a framework for batch processing that provides reusable functions that are essential in processing large volumes of records, including:

It also provides more advanced technical services and features that will enable extremely high-volume and high performance batch jobs through optimizations and partitioning techniques. Spring Batch is a framework for batch processing – execution of a series of jobs. In Spring Batch, A job consists of many steps and each step consists of a READ-PROCESS-WRITE task or single operation task (tasklet).

For "READ-PROCESS-WRITE" process, it means "read" data from the resources (csv, xml or database), "process" it and "write" it to other resources (csv, xml and database). For example, a step may read data from a CSV file, process it and write it into the database. Spring Batch provides many made Classes to read/write CSV, XML and database.

For "single" operation task (tasklet), it means doing single task only, like clean up the resources after or before a step is started or completed.

And the steps can be chained together to run as a job.

Integration framework

[edit]

Spring Integration is a framework for Enterprise application integration that provides reusable functions that are essential in messaging, or event-driven architectures.

Spring Integration supports pipe-and-filter based architectures.

Criticisms

[edit]

The Spring Framework has received some criticism for what some developers perceive to be an over-reliance on XML by Spring's container. Since version 3.0.0, however, developers have been able to specify all or part of an application context through annotations. Spring Boot makes heavy use of this to minimize the amount of configuration that must be written. Furthermore, the Spring Tool Suite (STS), built on top of Eclipse, provides code-completion, validation, contextual information, and graphical visualizations when editing Spring XML configuration files.

See also

[edit]

References

[edit]
  • ^ What is the difference between the depencylookup and dependency injection - Spring Forum. Forum.springsource.org (2009-10-28). Retrieved on 2013-11-24.
  • ^ Spring VS EJB3
  • ^ "Pitchfork FAQ". Retrieved 2006-06-06.
  • ^ Hibernate VS Spring
  • ^ Introduction to the Spring Framework
  • ^ Johnson, Expert One-on-One J2EE Design and Development, Ch. 12. et al.
  • ^ Patterns of Enterprise Application Architecture: Front Controller
  • ^ Spring Boot
  • Bibliography

    [edit]
    • Mak, Gary (September 1, 2010). Spring Recipes: A Problem-Solution Approach (Second ed.). Apress. p. 1104. ISBN 1-4302-2499-1.
  • Walls, Craig (November 28, 2010). Spring in Action (Third ed.). Manning. p. 700. ISBN 1-935182-35-8.
  • Walls, Craig; Breidenbach, Ryan (August 16, 2007). Spring in Action (Second ed.). Manning. p. 650. ISBN 1-933988-13-4.
  • Johnson, Rod; Höller, Jürgen; Arendsen, Alef; Risberg, Thomas; Sampaleanu, Colin (July 8, 2005). Professional Java Development with the Spring Framework (First ed.). Wrox Press. p. 672. ISBN 0-7645-7483-3.
  • Harrop, Rob; Machacek, Jan (January 31, 2005). Pro Spring (First ed.). Apress. p. 832. ISBN 1-59059-461-4.
  • Johnson, Rod; Jürgen, Höller (October 23, 2002). J2EE Development without EJB (First ed.). Wrox Press. p. 768. ISBN 0-7645-5831-5.
  • Johnson, Rod (October 2002). Expert One-on-one J2EE Design and Development (First ed.). Wrox Press. p. 750. ISBN 0-7645-4385-7.
  • Pollack, Mark; Giercke, Oliver; Risberg, Thomas; Brisbin, Jon; Hunger, Michael (October 31, 2012). Spring Data (First ed.). O'Reilly. p. 316. ISBN 978-1449323950.
  • Sarin, Ashish (December 10, 2012). Getting started with Spring Framework (First ed.). Self-published. p. 324. ISBN 978-1480013971.
  • Long, Josh (August 27, 2013). Spring Framework LiveLessons (First ed.). Addison-Wesley Professional. pp. 4+ Hours. ISBN 978-0-13-346307-1.
  • [edit]


    Category:Aspect-oriented programming Category:Java enterprise platform Category:Web frameworks


    Retrieved from "https://en.wikipedia.org/w/index.php?title=User:Indsin/sandbox&oldid=724014736"

    Hidden category: 
    Noindexed pages
     



    This page was last edited on 6 June 2016, at 16:45 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki