Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Vacuum chamber materials  





2 Vacuum degassing  



2.1  Process  







3 Vacuum drying  





4 World's largest vacuum chamber  





5 See also  





6 References  














Vacuum chamber






العربية
Català
Deutsch
Español
Français
Italiano

Norsk bokmål
Português
Русский

Türkçe
Українська

 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 




In other projects  



Wikimedia Commons
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


A large vacuum chamber.
A small vacuum chamber for studio or lab use in de-airing materials such as mold rubbers and resins.
Vacuum chamber for testing leaks in packaging

Avacuum chamber is a rigid enclosure from which air and other gases are removed by a vacuum pump. This results in a low-pressure environment within the chamber, commonly referred to as a vacuum. A vacuum environment allows researchers to conduct physical experiments or to test mechanical devices which must operate in outer space (for example) or for processes such as vacuum dryingorvacuum coating. Chambers are typically made of metals which may or may not shield applied external magnetic fields depending on wall thickness, frequency, resistivity, and permeability of the material used. Only some materials are suitable for vacuum use.

Chambers often have multiple ports, covered with vacuum flanges, to allow instruments or windows to be installed in the walls of the chamber. In low to medium-vacuum applications, these are sealed with elastomer o-rings. In higher vacuum applications, the flanges have knife edges machined onto them, which cut into a copper gasket when the flange is bolted on.

A type of vacuum chamber frequently used in the field of spacecraft engineering is a thermal vacuum chamber, which provides a thermal environment representing what a spacecraft would experience in space.

Vacuum chamber materials[edit]

Vacuum chambers can be constructed of many materials. "Metals are arguably the most prevalent vacuum chamber materials."[1] The strength, pressure, and permeability are considerations for selecting chamber material. Common materials are:

Vacuum degassing[edit]

"Vacuum is the process of using vacuum to remove gases from compounds which become entrapped in the mixture when mixing the components."[2] To assure a bubble-free mold when mixing resin and silicone rubbers and slower-setting harder resins, a vacuum chamber is required. A small vacuum chamber is needed for de-airing (eliminating air bubbles) for materials prior to their setting. The process is fairly straightforward. The casting or molding material is mixed according to the manufacturers directions.

Process[edit]

Since the material may expand 4–5 times under a vacuum, the mixing container must be large enough to hold a volume of four to five times the amount of the original material that is being vacuumed to allow for the expansion; if not, it will spill over the top of the container requiring clean-up that can be avoided. The material container is then placed into the vacuum chamber; a vacuum pump is connected and turned on. Once the vacuum reaches 29 inches (at sea level) of mercury, the material will begin to rise (resembling foam). When the material falls, it will plateau and stop rising. The vacuuming is continued for another 2 to 3 minutes to make certain all of the air has been removed from the material. Once this interval is reached, the vacuum pump is shut off and the vacuum chamber release valve is opened to equalize air pressure. The vacuum chamber is opened, the material is removed and is ready to pour into the mold.

Though a maximum vacuum one can theoretically achieve at sea level is 29.921 inches of mercury (Hg,) this will vary significantly as altitude increases. For example, in Denver, Colorado, at one mile (1.6 km) above sea level, it is only possible to achieve a vacuum on the mercury scale of 24.896 Hg.

To keep the material air-free, it must be slowly poured in a high and narrow stream starting from the corner of the mold box, or mold, letting the material flow freely into the box or mold cavity. Usually, this method will not introduce any new bubbles into the vacuumed material. To ensure that the material is totally devoid of air bubbles, the entire mold/mold box may be placed in the chamber for an additional few minutes; this will assist the material in flowing into difficult areas of the mold/mold box.

Vacuum drying[edit]

Water and other liquids may accumulate on a product during the production process. "Vacuum is often employed as a process for removing bulk and absorbed water (or other solvents) from a product. Combined with heat, vacuum can be an effective method for drying."[3] [4]

World's largest vacuum chamber[edit]

NASA's Space Power Facility houses the world's largest vacuum chamber. It was built in 1969 and stands 122 feet (37 m) high and 100 feet (30 m) in diameter, enclosing a bullet-shaped space. It was originally commissioned for nuclear-electric power studies under vacuum conditions, but was later decommissioned. Recently, it was recommissioned for use in testing spacecraft propulsion systems. Recent uses include testing the airbag landing systems for the Mars Pathfinder and the Mars Exploration Rovers, Spirit and Opportunity, under simulated Mars atmospheric conditions.

Each arm of the LIGO detectors in Livingston, Louisiana, and Hanford, Washington, is a vacuum chamber 4 kilometres (2.5 mi) long, making them the longest vacuum chambers in the world.

See also[edit]

References[edit]

  1. ^ Danielson, PHil. "Choosing the Right Vacuum Materials" (PDF). The Vacuum Lab. Archived from the original (PDF) on July 24, 2012. Retrieved February 10, 2012.
  • ^ "Vacuum Degassing Epoxy & Silicone" (PDF). LACO Technologies, Inc. Retrieved February 10, 2012.
  • ^ "Vacuum Drying" (PDF). LACO Technologies, Inc. Retrieved February 10, 2012.
  • ^ Danielson, Phil. "Desorbing Water in Vacuum Systems: Bakeout or UV?" (PDF). The Vacuum Lab. Archived from the original (PDF) on May 16, 2011. Retrieved February 10, 2012.

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=Vacuum_chamber&oldid=1214515375"

    Categories: 
    Vacuum systems
    Laboratory equipment
    Hidden categories: 
    Articles with short description
    Short description is different from Wikidata
    Articles needing additional references from August 2018
    All articles needing additional references
    Articles needing cleanup from July 2023
    All pages needing cleanup
    Cleanup tagged articles with a reason field from July 2023
    Wikipedia pages needing cleanup from July 2023
     



    This page was last edited on 19 March 2024, at 12:31 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki