Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 In hydrology  





2 In speleology  





3 See also  





4 References  





5 Further reading  














Vadose zone






العربية
Boarisch
Català
Deutsch
Eesti
فارسی
Français
Italiano
עברית
Nederlands

Norsk nynorsk
Oʻzbekcha / ўзбекча
Polski
Português
Русский
Sunda
Türkçe
Українська

 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Cross-section of a hillslope depicting the vadose zone, capillary fringe, water table, and phreatic or saturated zone. (Source: United States Geological Survey.)
Cross section showing the water table varying with surface topography as well as a perched water table

The vadose zone, also termed the unsaturated zone, is the part of Earth between the land surface and the top of the phreatic zone, the position at which the groundwater (the water in the soil's pores) is at atmospheric pressure ("vadose" is from the Latin word for "shallow"). Hence, the vadose zone extends from the top of the ground surface to the water table.

Water in the vadose zone has a pressure head less than atmospheric pressure, and is retained by a combination of adhesion (funiculary groundwater), and capillary action (capillary groundwater). If the vadose zone envelops soil, the water contained therein is termed soil moisture. In fine grained soils, capillary action can cause the pores of the soil to be fully saturated above the water table at a pressure less than atmospheric. The vadose zone does not include the area that is still saturated above the water table, often referred to as the capillary fringe. [1]

Movement of water within the vadose zone is studied within soil physics and hydrology, particularly hydrogeology, and is of importance to agriculture, contaminant transport, and flood control. The Richards equation is often used to mathematically describe the flow of water, which is based partially on Darcy's law. Groundwater recharge, which is an important process that refills aquifers, generally occurs through the vadose zone from precipitation.

In hydrology

[edit]
The sharp contact between the vadose zone (brown oxidized mudstone) and the underlying phreatic zone (grey unoxidized mudstone) exposed at a construction site.

The vadose zone is the undersaturated portion of the subsurface that lies above the groundwater table. The soil and rock in the vadose zone are not fully saturated with water; that is, the pores within them contain air as well as water. The portion of the vadose zone that is inhabited by soil microorganism, fungi and plant roots may sometimes be called the soil carbon sponge.

In some places, the vadose zone is absent, as is common where there are lakes and marshes, and in some places, it is hundreds of meters thick, as is common in arid regions.[2]

Unlike the aquifers of the underlying water-saturated phreatic zone, the vadose zone is not a source of readily available water for human consumption. It is of great importance in providing water and nutrients that are vital to the soil carbon sponge and the biosphere. It is intensively used for the cultivation of plants, construction of buildings, and disposal of waste.[2]

The vadose zone is often the main factor controlling water movement from the land surface to the aquifer. Thus, it strongly affects the rate of aquifer recharge and is critical for the use and management of groundwater. Flow rates and chemical reactions in the vadose zone also control whether, where, and how fast contaminants enter groundwater supplies. Understanding of vadose-zone processes is therefore crucial in determining the amount and quality of groundwater that is available for human use.[2]

In speleology

[edit]
An example of a vadose cave passage in Mammoth Cave, Kentucky

Inspeleology, cave passages formed in the vadose zone tend to be canyon-like in shape, as the water dissolves bedrock on the floor of the passage.[3] Passages created in completely water-filled conditions are called phreatic passages and tend to be circular in cross-section.[4]

See also

[edit]

References

[edit]
  1. ^ Freeze, R.A. and Cherry, J.A., 1979. Groundwater. Englewood Cliffs, NJ, Printice-Hall Inc., 604 p.
  • ^ a b c US Geological Survey, Office of Groundwater
  • ^ Caves & Caving: Glossary
  • ^ New Mexico: Bureau of Mines & Mining Bulletin 117 (Part I: Discussion of Deposits and Events)
  • Further reading

    [edit]
    Retrieved from "https://en.wikipedia.org/w/index.php?title=Vadose_zone&oldid=1176588323"

    Categories: 
    Aquifers
    Hydrology
    Hydrogeology
    Soil mechanics
    Soil physics
    Hidden categories: 
    Articles with short description
    Short description is different from Wikidata
    Articles needing additional references from March 2007
    All articles needing additional references
    Pages displaying wikidata descriptions as a fallback via Module:Annotated link
     



    This page was last edited on 22 September 2023, at 18:15 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki