Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Theory  





2 Impacts  





3 References  














Valley exit jet






Français
Hausa
 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Avalley exit jet is a strong, down-valley, elevated air current that emerges above the intersection of the valley and its adjacent plain. These winds frequently reach a maximum of 20 m/s (45 mph) at a height of 40–200 m (130–660 ft) above the ground. Surface winds below the jet may sway vegetation but are significantly weaker.

The presence of these strong nighttime down-valley air flows has been documented at the mouth of many Alpine valleys that merge with basins, such as the Inn Valley of Austria, where the jet is strong enough to be heard at the ground. In the United States, exit jet signatures have been observed at the North Fork Gunnison RiveratPaonia, Colorado; the exit of South Boulder Creek south of Boulder, Colorado; Albuquerque, New Mexico at the mouth of Tijeras Canyon; and the mouth of Spanish Fork CanyoninUtah.

Theory

[edit]

Exit jets are likely to be found in valley regions that exhibit diurnal mountain wind systems, such as those of the dry mountain ranges of the US. These diurnal wind systems are driven by horizontal pressure gradients. Due to the abrupt transition over a short distance between the valley high pressure and the basin low pressure, the gradients are strongest near the valley exit, producing a jet.

Other meteorological factors acting to increase exit wind speeds are the acceleration of winds originating inside the valley as they travel to lower elevations downvalley, and the process of cold valley air sinking and ejecting into the plain. Deep valleys that terminate abruptly at a plain are more impacted by these factors than are those that gradually become shallower as downvalley distance increases.[1]

Impacts

[edit]

Valley exit jets can play a major role in the mitigation of air pollution:

Methods of examining exit jets include remote sensing and direct observation. SODAR and Doppler LIDAR have been used in numerous studies to identify, quantify and relate the jets to atmospheric transport of hazardous materials.[3] Detailed profiles of winds at canyon exits can be directly observed and calculated using a single or double theodolite and tethersondes.

The identification and measurement of valley exit jets can also significantly aid in fire control, as fire often rides valley jets, as well as the development of wind energy.

References

[edit]
  1. ^ Whiteman, C. David (2000). Mountain Meteorology, p. 193. Oxford University Press, New York. ISBN 978-0-19-513271-7, pp. 191–193.
  • ^ Darby, L.S., and R.M. Banta (2006) The modulation of canyon flows by larger-scale influences. Preprints, 12th Conf. on Mountain Meteorology. Amer. Meteor. Soc., 14-4.
  • ^ Banta, R.M., L.D. Olivier, P.H. Gudiksen, and R. Lange, (1996). Implications of small-scale flow features to modeling dispersion over complex terrain. J. Appl. Meteorol., 35:3, 330-342.

  • t
  • e

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=Valley_exit_jet&oldid=966406423"

    Categories: 
    Atmospheric dynamics
    Mountain meteorology
    Boundary layer meteorology
    Atmospheric science stubs
    Hidden category: 
    All stub articles
     



    This page was last edited on 6 July 2020, at 23:10 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki