Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Value category  



1.1  Assignment: l-values and r-values  





1.2  R-values and addresses  







2 In assembly language  





3 Notes  





4 References  





5 External links  














Value (computer science)






Català
Čeština
Deutsch
Ελληνικά
Español
Esperanto
فارسی

Hrvatski
Ido
Bahasa Indonesia
Italiano
עברית

Polski
Português
Русский
Simple English
Suomi
Tagalog

Українська
Tiếng Vit

 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Incomputer science and software programming, a value is the representation of some entity that can be manipulated by a program. The members of a type are the values of that type.[1]

The "value of a variable" is given by the corresponding mapping in the environment.[2] In languages with assignable variables, it becomes necessary to distinguish between the r-value (or contents) and the l-value (or location) of a variable.[3]

Indeclarative (high-level) languages, values have to be referentially transparent. This means that the resulting value is independent of the location of the expression needed to compute the value. Only the contents of the location (the bits, whether they are 1 or 0) and their interpretation are significant.[citation needed]

Value category

[edit]

Despite its name, in the C++ language standards this terminology is used to categorize expressions, not values.[4]: 8.2.1 

Assignment: l-values and r-values

[edit]

Some languages use the idea of l-values and r-values, deriving from the typical mode of evaluation on the left and right-hand side of an assignment statement. An l-value refers to an object that persists beyond a single expression. An r-value is a temporary value that does not persist beyond the expression that uses it.[5]

The notion of l-values and r-values was introduced by Combined Programming Language (CPL). The notions in an expression of r-value, l-value, and r-value/l-value are analogous to the parameter modes of input parameter (has a value), output parameter (can be assigned), and input/output parameter (has a value and can be assigned), though the technical details differ between contexts and languages.

R-values and addresses

[edit]

In many languages, notably the C family, l-values have storage addresses that are programmatically accessible to the running program (e.g., via some address-of operator like "&" in C/C++), meaning that they are variables or de-referenced references to a certain memory location. R-values can be l-values (see below) or non-l-values—a term only used to distinguish from l-values. Consider the C expression 4 + 9. When executed, the computer generates an integer value of 13, but because the program has not explicitly designated where in the computer this 13 is stored, the expression is a non l-value. On the other hand, if a C program declares a variable x and assigns the value of 13 to x, then the expression x has a value of 13 and is an l-value.

In C, the term l-value originally meant something that could be assigned to (hence the name, indicating it is on the left side of the assignment operator), but since the reserved word const (constant) was added to the language, the term is now 'modifiable l-value'. In C++11 a special semantic-glyph && exists ( not to be confused with the && operator used for logical operations ), to denote the use/access of the expression's address for the compiler only; i.e., the address cannot be retrieved using the address-of & operator during the run-time of the program (see the use of move semantics). The addition of move semantics complicated the value classification taxonomy by adding to it the concept of an xvalue (expiring value) which refers to an object near the end of its lifetime whose resources can be reused (typically by moving them). This also lead to the creation of the categories glvalue (generalized lvalue) which are lvalues and xvalues and prvalues (pure rvalues) which are rvalues that are not xvalues.[6]

This type of reference can be applied to all r-values including non-l-values as well as l-values. Some processors provide one or more instructions which take an immediate value, sometimes referred to as "immediate" for short. An immediate value is stored as part of the instruction which employs it, usually to load into, add to, or subtract from, a register. The other parts of the instruction are the opcode, and destination. The latter may be implicit. (A non-immediate value may reside in a register, or be stored elsewhere in memory, requiring the instruction to contain a direct or indirect address [e.g., index register address] to the value.)

The l-value expression designates (refers to) an object. A non-modifiable l-value is addressable, but not assignable. A modifiable l-value allows the designated object to be changed as well as examined. An r-value is any expression, a non-l-value is any expression that is not an l-value. One example is an "immediate value" (see above) and consequently not addressable.

In assembly language

[edit]

A value can be virtually any kind of data by a given data type, for instance a string, a digit, a single letter.

Processors often support more than one size of immediate data, e.g. 8 or 16 bit, employing a unique opcode and mnemonic for each instruction variant. If a programmer supplies a data value that will not fit, the assembler issues an "Out of range" error message. Most assemblers allow an immediate value to be expressed as ASCII, decimal, hexadecimal, octal, or binary data. Thus, the ASCII character 'A' is the same as 65or0x41. The byte order of strings may differ between processors, depending on the assembler and computer architecture.

Notes

[edit]
  1. ^ Mitchell 1996, p. 9.
  • ^ Aho, Alfred V.; Lam, Monica S.; Sethi, Ravi; Ullman, Jeffrey D. (1986). Compilers: Principles, Techniques, and Tools. Addison-Wesley Publishing Company. ISBN 0-201-10088-6.
  • ^ Mitchell 1996, pp. 389–390.
  • ^ "ISO/IEC 14882:2017 Programming languages — C++". 2017.
  • ^ "Lvalues and Rvalues (Visual C++)". Microsoft Developer Network. Retrieved 3 September 2016.
  • ^ William M. Miller. "A Taxonomy of Expression Value Categories" (PDF).
  • References

    [edit]
    [edit]
    Retrieved from "https://en.wikipedia.org/w/index.php?title=Value_(computer_science)&oldid=1235412550"

    Categories: 
    Computer data
    Programming language concepts
    Type theory
    Hidden categories: 
    Articles with short description
    Short description matches Wikidata
    Articles needing additional references from August 2009
    All articles needing additional references
    All articles with unsourced statements
    Articles with unsourced statements from March 2011
     



    This page was last edited on 19 July 2024, at 04:56 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki