Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Consequence  





2 Theorem  





3 Nonuniqueness  





4 See also  





5 References  














Vector potential






العربية
Català
Čeština
Deutsch
Español
فارسی
Français

Հայերեն
Italiano
עברית
Қазақша
Magyar
Nederlands


Polski
Português
Русский
Slovenščina
Suomi
Svenska
Українська

 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Invector calculus, a vector potential is a vector field whose curl is a given vector field. This is analogous to a scalar potential, which is a scalar field whose gradient is a given vector field.

Formally, given a vector field , a vector potential is a vector field such that

Consequence

[edit]

If a vector field admits a vector potential , then from the equality (divergence of the curl is zero) one obtains which implies that must be a solenoidal vector field.

Theorem

[edit]

Let be a solenoidal vector field which is twice continuously differentiable. Assume that decreases at least as fast as for . Define where denotes curl with respect to variable . Then is a vector potential for . That is,

The integral domain can be restricted to any simply connected region . That is, also is a vector potential of , where

A generalization of this theorem is the Helmholtz decomposition theorem, which states that any vector field can be decomposed as a sum of a solenoidal vector field and an irrotational vector field.

Byanalogy with the Biot-Savart law, also qualifies as a vector potential for , where

.

Substituting (current density) for and (H-field) for , yields the Biot-Savart law.

Let be a star domain centered at the point , where . Applying Poincaré's lemma for differential forms to vector fields, then also is a vector potential for , where

Nonuniqueness

[edit]

The vector potential admitted by a solenoidal field is not unique. If is a vector potential for , then so is where is any continuously differentiable scalar function. This follows from the fact that the curl of the gradient is zero.

This nonuniqueness leads to a degree of freedom in the formulation of electrodynamics, or gauge freedom, and requires choosing a gauge.


See also

[edit]

References

[edit]
Retrieved from "https://en.wikipedia.org/w/index.php?title=Vector_potential&oldid=1225654758"

Categories: 
Concepts in physics
Potentials
Vector calculus
Vector physical quantities
Hidden categories: 
Articles with short description
Short description is different from Wikidata
Articles with GND identifiers
 



This page was last edited on 25 May 2024, at 21:38 (UTC).

Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



Privacy policy

About Wikipedia

Disclaimers

Contact Wikipedia

Code of Conduct

Developers

Statistics

Cookie statement

Mobile view



Wikimedia Foundation
Powered by MediaWiki