Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Effects  





2 Prevention  





3 Anti-vibration gloves  





4 Reactive monitoring  





5 History  





6 See also  





7 References  





8 External links  














Vibration white finger






Dansk
Deutsch
فارسی


Oʻzbekcha / ўзбекча
Polski
Русский
Svenska
Українська

 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Vibration white finger (VWF), also known as hand-arm vibration syndrome (HAVS) or dead finger,[1] is a secondary form of Raynaud's syndrome, an industrial injury triggered by continuous use of vibrating hand-held machinery. Use of the term vibration white finger has generally been superseded in professional usage by broader concept of HAVS, although it is still used by the general public. The symptoms of vibration white finger are the vascular component of HAVS.

HAVS is a widespread recognized industrial disease affecting tens of thousands of workers. It is a disorder that affects the blood vessels, nerves, muscles, and joints of the hand, wrist, and arm. Its best known effect is vibration-induced white finger (VWF), a term introduced by the Industrial Injury Advisory Council in 1970. Injury can occur at frequencies between 5 and 2000 Hz but the greatest risk for fingers is between 50 and 300 Hz. The total risk exposure for hand and arm is calculated by the use of ISO 5349-1, which stipulates maximum damage between 8 and 16 Hz and a rapidly declining risk at higher frequencies. The ISO 5349-1 frequency risk assessment has been criticized as corresponding poorly to observational data; more recent research suggests that medium and high frequency vibrations also increase HAVS risk.[2][3]

Effects[edit]

Excessive exposure to hand arm vibrations can result in various patterns of diseases casually known as HAVS or VWF. This can affect nerves, joints, muscles, blood vessels or connective tissues of the hand and forearm:[citation needed]

In extreme cases, the affected person may lose fingers. The effects are cumulative. When symptoms first appear, they may disappear after a short time. If exposure to vibration continues over months or years, the symptoms can worsen and become permanent.[4]

Prevention[edit]

The Control of Vibration at Work Regulations 2005, created under the Health and Safety at Work etc. Act 1974,[5] is the legislation in the UK that governs exposure to vibration and assists with preventing HAVS occurring.

Good practice in industrial health and safety management requires that worker vibration exposure is assessed in terms of acceleration, amplitude, and duration. Using a tool that vibrates slightly for a long time can be as damaging as using a heavily vibrating tool for a short time. The duration of use of the tool is measured as trigger time, the period when the worker actually has their finger on the trigger to make the tool run, and is typically quoted in hours per day. Vibration amplitude is quoted in metres per second squared, and is measured by an accelerometer on the tool or given by the manufacturer. Amplitudes can vary significantly with tool design, condition and style of use, even for the same type of tool.[citation needed]

In the UK, Health and Safety Executive gives the example of a hammer drill which can vary from 6 m/s² to 25 m/s². HSE publishes a list of typically observed vibration levels for various tools, and graphs of how long each day a worker can be exposed to particular vibration levels. This makes managing the risk relatively straightforward. Tools are given an Exposure Action Value (EAV, the time which a tool can be used before action needs to be taken to reduce vibration exposure) and an Exposure Limit Value (ELV, the time after which a tool may not be used).[citation needed]

In the United States, the National Institute for Occupational Safety and Health published a similar database where values for sound power and vibrations for commonly found tools from large commercial vendors in the United States were surveyed. Further testing is underway for more and newer tools.[citation needed]

The effect of legislation in various countries on worker vibration limits has been to oblige equipment providers to develop better-designed, better-maintained tools, and for employers to train workers appropriately. It also drives tool designers to innovate to reduce vibration. Some examples are the easily manipulated mechanical arm (EMMA)[6] and the suspension mechanism designed into chainsaws.[citation needed]

Anti-vibration gloves[edit]

Anti vibration gloves are traditionally made with a thick and soft palm material to insulate from the vibrations. The protection is highly dependent on frequency range; most gloves provide no protection in palm and wrist below ~50 Hz and in fingers below ~400 Hz. Factors such as high grip force, cold hands or vibration forces in shear direction can have a reducing effect and or increase damage to the hands and arms. Gloves do help to keep hands warm but to get the desired effect, the frequency output from the tool must match the properties of the vibration glove that is selected. Anti-vibration gloves in many cases amplify the vibrations at frequencies lower than those mentioned in the text above.[citation needed]

Reactive monitoring[edit]

A simpler system, known as re-active monitoring, may be used by, for example, monitoring rates of usage of consumable items. Such a system was introduced by Carl West at a fabrication workshop in Rotherham, England. In this system, the vibration levels of the angle grinding tools in use was measured, as was the average life of a grinding disk. Thus by recording numbers of grinding disks used, vibration exposure may be calculated.[7]

History[edit]

The symptoms were first described by Professor Giovanni Loriga in Italy in 1911, although the link was not made between the symptoms and vibrating hand tools until a study undertaken by Alice Hamilton MD in 1918. She formed her theory through following the symptoms reported by quarry cutters and carvers in Bedford, Indiana. She also discovered the link between an increase in HAV symptoms and cold weather as 1918 was a particularly harsh winter.[citation needed]

The first scale for assessing the condition, the Taylor-Pelmear scale, was published in 1975, but it was not listed as a prescribed disease in the United Kingdom until 1985, and the Stockholm scale was introduced in 1987. In 1997, the UK High Court awarded £127,000 in compensation to seven coal miners for vibration white finger. A UK government fund set up to cover subsequent claims by ex-coalminers had exceeded £100 million in payments by 2004.

See also[edit]

References[edit]

  1. ^ Rapini, Ronald P.; Bolognia, Jean L.; Jorizzo, Joseph L. (2007). Dermatology: 2-Volume Set. St. Louis: Mosby. ISBN 978-1-4160-2999-1.
  • ^ Bovenzi, Massimo (2012). "Epidemiological evidence for new frequency weightings of hand-transmitted vibration". Industrial Health. 50 (5): 377–387. doi:10.2486/indhealth.ms1382. ISSN 1880-8026. PMID 23060251.
  • ^ Nilsson, Tohr; Wahlström, Jens; Burström, Lage (2017). "Hand-arm vibration and the risk of vascular and neurological diseases-A systematic review and meta-analysis". PLOS ONE. 12 (7): e0180795. Bibcode:2017PLoSO..1280795N. doi:10.1371/journal.pone.0180795. ISSN 1932-6203. PMC 5509149. PMID 28704466.
  • ^ "Vibration White Finger Compensation Claims". UK Injury Compensation Zone. Archived from the original on December 1, 2016.
  • ^ "The Control of Vibration at Work Regulations 2005". www.legislation.gov.uk. Retrieved 11 January 2018.
  • ^ "Boeing Frontiers Online". www.boeing.com. Retrieved 11 January 2018.
  • ^ "Monitoring exposure to Hand-Arm Vibration". Hse.gov.uk. 2010-08-19. Retrieved 2012-05-25.
  • External links[edit]


    Retrieved from "https://en.wikipedia.org/w/index.php?title=Vibration_white_finger&oldid=1224368113"

    Categories: 
    Overuse injuries
    Tort law
    Lawsuits
    Mechanical vibrations
    Skin conditions resulting from physical factors
    Hidden categories: 
    Articles with short description
    Short description matches Wikidata
    Articles to be merged from March 2024
    All articles to be merged
    Articles needing additional references from August 2023
    All articles needing additional references
    All articles with unsourced statements
    Articles with unsourced statements from October 2020
    Webarchive template wayback links
    Articles with J9U identifiers
    Articles with LCCN identifiers
    Articles with NDL identifiers
     



    This page was last edited on 18 May 2024, at 00:06 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki