Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Equation  





2 Derivation for elliptic orbits (0  eccentricity <1)  





3 Practical applications  





4 Notes  





5 References  














Vis-viva equation






العربية
Català
Deutsch
Español
Français

Português
Română
Slovenčina

 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Inastrodynamics, the vis-viva equation, also referred to as orbital-energy-invariance laworBurgas formula[1][better source needed], is one of the equations that model the motion of orbiting bodies. It is the direct result of the principle of conservation of mechanical energy which applies when the only force acting on an object is its own weight which is the gravitational force determined by the product of the mass of the object and the strength of the surrounding gravitational field.

Vis viva (Latin for "living force") is a term from the history of mechanics, and it survives in this sole context. It represents the principle that the difference between the total work of the accelerating forces of a system and that of the retarding forces is equal to one half the vis viva accumulated or lost in the system while the work is being done.

Equation[edit]

For any Keplerian orbit (elliptic, parabolic, hyperbolic, or radial), the vis-viva equation[2] is as follows:[3] where:

The product of GM can also be expressed as the standard gravitational parameter using the Greek letter μ.

Derivation for elliptic orbits (0 ≤ eccentricity <1)[edit]

In the vis-viva equation the mass m of the orbiting body (e.g., a spacecraft) is taken to be negligible in comparison to the mass M of the central body (e.g., the Earth). The central body and orbiting body are also often referred to as the primary and a particle respectively. In the specific cases of an elliptical or circular orbit, the vis-viva equation may be readily derived from conservation of energy and momentum.

Specific total energy is constant throughout the orbit. Thus, using the subscripts a and p to denote apoapsis (apogee) and periapsis (perigee), respectively,

Rearranging,

Recalling that for an elliptical orbit (and hence also a circular orbit) the velocity and radius vectors are perpendicular at apoapsis and periapsis, conservation of angular momentum requires specific angular momentum , thus :

Isolating the kinetic energy at apoapsis and simplifying,

From the geometry of an ellipse, where a is the length of the semimajor axis. Thus,

Substituting this into our original expression for specific orbital energy,

Thus, and the vis-viva equation may be written or

Therefore, the conserved angular momentum L = mh can be derived using and , where aissemi-major axis and bissemi-minor axis of the elliptical orbit, as follows: and alternately,

Therefore, specific angular momentum , and

Total angular momentum

Practical applications[edit]

Given the total mass and the scalars r and v at a single point of the orbit, one can compute:

The formula for escape velocity can be obtained from the Vis-viva equation by taking the limit as approaches :

Notes[edit]

  1. ^ For the three-body problem there is hardly a comparable vis-viva equation: conservation of energy reduces the larger number of degrees of freedom by only one.

References[edit]

  1. ^ Ivanov, Stefan: XXV Национална олимпиада по астрономия, Бургас, 06-08.05.2022, Полезни формули и справочни данни (Useful formulas and reference data)
  • ^ Tom Logsdon (1998). Orbital Mechanics: Theory and Applications. John Wiley & Sons. ISBN 978-0-471-14636-0.
  • ^ Lissauer, Jack J.; de Pater, Imke (2019). Fundamental Planetary Sciences : physics, chemistry, and habitability. New York, NY, USA: Cambridge University Press. pp. 29–31. ISBN 9781108411981.

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=Vis-viva_equation&oldid=1217771597"

    Categories: 
    Orbits
    Conservation laws
    Equations of astronomy
    Hidden categories: 
    Articles with short description
    Short description is different from Wikidata
    All articles lacking reliable references
    Articles lacking reliable references from April 2024
     



    This page was last edited on 7 April 2024, at 19:58 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki