Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Volume element in Euclidean space  





2 Volume element of a linear subspace  





3 Volume element of manifolds  



3.1  Area element of a surface  





3.2  Example: Sphere  







4 See also  





5 References  














Volume element






العربية
Español
فارسی
Nederlands

Română
 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Inmathematics, a volume element provides a means for integratingafunction with respect to volume in various coordinate systems such as spherical coordinates and cylindrical coordinates. Thus a volume element is an expression of the form where the are the coordinates, so that the volume of any set can be computed by For example, in spherical coordinates , and so .

The notion of a volume element is not limited to three dimensions: in two dimensions it is often known as the area element, and in this setting it is useful for doing surface integrals. Under changes of coordinates, the volume element changes by the absolute value of the Jacobian determinant of the coordinate transformation (by the change of variables formula). This fact allows volume elements to be defined as a kind of measure on a manifold. On an orientable differentiable manifold, a volume element typically arises from a volume form: a top degree differential form. On a non-orientable manifold, the volume element is typically the absolute value of a (locally defined) volume form: it defines a 1-density.

Volume element in Euclidean space[edit]

InEuclidean space, the volume element is given by the product of the differentials of the Cartesian coordinates In different coordinate systems of the form , , , the volume element changes by the Jacobian (determinant) of the coordinate change: For example, in spherical coordinates (mathematical convention) the Jacobian determinant is so that This can be seen as a special case of the fact that differential forms transform through a pullback as

Volume element of a linear subspace[edit]

Consider the linear subspace of the n-dimensional Euclidean space Rn that is spanned by a collection of linearly independent vectors To find the volume element of the subspace, it is useful to know the fact from linear algebra that the volume of the parallelepiped spanned by the is the square root of the determinant of the Gramian matrix of the :

Any point p in the subspace can be given coordinates such that At a point p, if we form a small parallelepiped with sides , then the volume of that parallelepiped is the square root of the determinant of the Grammian matrix This therefore defines the volume form in the linear subspace.

Volume element of manifolds[edit]

On an oriented Riemannian manifold of dimension n, the volume element is a volume form equal to the Hodge dual of the unit constant function, : Equivalently, the volume element is precisely the Levi-Civita tensor .[1] In coordinates, where is the determinant of the metric tensor g written in the coordinate system.

Area element of a surface[edit]

A simple example of a volume element can be explored by considering a two-dimensional surface embedded in n-dimensional Euclidean space. Such a volume element is sometimes called an area element. Consider a subset and a mapping function thus defining a surface embedded in . In two dimensions, volume is just area, and a volume element gives a way to determine the area of parts of the surface. Thus a volume element is an expression of the form that allows one to compute the area of a set B lying on the surface by computing the integral

Here we will find the volume element on the surface that defines area in the usual sense. The Jacobian matrix of the mapping is with index i running from 1 to n, and j running from 1 to 2. The Euclidean metric in the n-dimensional space induces a metric on the set U, with matrix elements

The determinant of the metric is given by

For a regular surface, this determinant is non-vanishing; equivalently, the Jacobian matrix has rank 2.

Now consider a change of coordinates on U, given by a diffeomorphism so that the coordinates are given in terms of by. The Jacobian matrix of this transformation is given by

In the new coordinates, we have and so the metric transforms as where is the pullback metric in the v coordinate system. The determinant is

Given the above construction, it should now be straightforward to understand how the volume element is invariant under an orientation-preserving change of coordinates.

In two dimensions, the volume is just the area. The area of a subset is given by the integral

Thus, in either coordinate system, the volume element takes the same expression: the expression of the volume element is invariant under a change of coordinates.

Note that there was nothing particular to two dimensions in the above presentation; the above trivially generalizes to arbitrary dimensions.

Example: Sphere[edit]

For example, consider the sphere with radius r centered at the origin in R3. This can be parametrized using spherical coordinates with the map Then and the area element is

See also[edit]

References[edit]

  1. ^ Carroll, Sean. Spacetime and Geometry. Addison Wesley, 2004, p. 90

Retrieved from "https://en.wikipedia.org/w/index.php?title=Volume_element&oldid=1225094878"

Categories: 
Measure theory
Integral calculus
Multivariable calculus
Hidden categories: 
Articles with short description
Short description is different from Wikidata
Articles to be split from December 2023
All articles to be split
 



This page was last edited on 22 May 2024, at 10:04 (UTC).

Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



Privacy policy

About Wikipedia

Disclaimers

Contact Wikipedia

Code of Conduct

Developers

Statistics

Cookie statement

Mobile view



Wikimedia Foundation
Powered by MediaWiki