Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Wave basin  





2 Wave flume  





3 Circular wave basin  





4 See also  





5 Further reading  





6 References  





7 External links  














Wave tank






Español
 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Model testing with periodic Stokes waves in the Wave–Tow Tank of the Jere A. Chase Ocean Engineering Laboratory, University of New Hampshire.

Awave tank is a laboratory setup for observing the behavior of surface waves. The typical wave tank is a box filled with liquid, usually water, leaving open or air-filled space on top. At one end of the tank, an actuator generates waves; the other end usually has a wave-absorbing surface.[1] A similar device is the ripple tank, which is flat and shallow and used for observing patterns of surface waves from above.

Wave basin[edit]

A wave basin at the University of Maine.

Awave basin is a wave tank which has a width and length of comparable magnitude, often used for testing ships, offshore structures and three-dimensional models of harbors (and their breakwaters).

Wave flume[edit]

Asolitary wave in a laboratory wave flume
A large wave flume of Forschungszentrum Küste in Marienwerder/Hannover, Germany, with a length of 307 m and a depth of 7 m.[2]

Awave flume (orwave channel) is a special sort of wave tank: the width of the flume is much less than its length. The generated waves are therefore – more or less – two-dimensional in a vertical plane (2DV), meaning that the orbital flow velocity component in the direction perpendicular to the flume side wall is much smaller than the other two components of the three-dimensional velocity vector. This makes a wave flume a well-suited facility to study near-2DV structures, like cross-sections of a breakwater. Also (3D) constructions providing little blockage to the flow may be tested, e.g. measuring wave forces on vertical cylinders with a diameter much less than the flume width.[3]

Wave flumes may be used to study the effects of water wavesoncoastal structures, offshore structures, sediment transport and other transport phenomena.

The waves are most often generated with a mechanical wavemaker, although there are also wind–wave flumes with (additional) wave generation by an air flow over the water – with the flume closed above by a roof above the free surface. The wavemaker frequently consists of a translating or rotating rigid wave board. Modern wavemakers are computer controlled, and can generate besides periodic waves also random waves, solitary waves, wave groups or even tsunami-like wave motion. The wavemaker is at one end of the wave flume, and at the other end is the construction being tested, or a wave absorber (a beach or special wave absorbing constructions).[4]

Head-on elastic soliton collision in shallow (h=13cm) water [5]

Often, the side walls contain glass windows, or are completely made of glass, allowing for a clear visual observation of the experiment, and the easy deployment of optical instruments (e.g. by Laser Doppler velocimetryorparticle image velocimetry).

Circular wave basin[edit]

In 2014, the first , circular, combined current and wave test basin, FloWaveTT was commissioned in The University of Edinburgh. This allows for "true" 360° waves to be generated to simulate rough storm conditions as well as scientific controlled waves in the same facility.

See also[edit]

Further reading[edit]

References[edit]

  • ^ Ocean and Hydraulics Laboratory in KAJIMA Technical research Institute
  • ^ Leo Holthuijsen. Waves in Oceanic and Coastal Waters (2018). 404 pag. ISBN 0521129958, ISBN 9780521129954
  • ^ Wave Lab at Department of Mathematics, ERAU-DB.
  • External links[edit]


    Retrieved from "https://en.wikipedia.org/w/index.php?title=Wave_tank&oldid=1127984599"

    Categories: 
    Experimental physics
    Hydrodynamics
    Water waves
    Scale modeling
    Physical models
    Hidden categories: 
    Articles with short description
    Short description matches Wikidata
    Commons category link is locally defined
    Articles containing video clips
     



    This page was last edited on 17 December 2022, at 19:26 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki